Plastic Injection Molding Process Analysis: Data Integration and Modeling for Improved Production Efficiency

This paper presents a comprehensive analysis of the plastic injection molding process through the integration of data acquisition technologies and classification models. In collaboration with a company specializing in plastic injection, data were extracted directly from the machine during a specific...

Full description

Saved in:
Bibliographic Details
Main Authors: Jose Isidro Hernández-Vega, Luis Alejandro Reynoso-Guajardo, Mario Carlos Gallardo-Morales, María Ernestina Macias-Arias, Amadeo Hernández, Nain de la Cruz, Jesús E. Soto-Soto, Carlos Hernández-Santos
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/22/10279
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850217264192684032
author Jose Isidro Hernández-Vega
Luis Alejandro Reynoso-Guajardo
Mario Carlos Gallardo-Morales
María Ernestina Macias-Arias
Amadeo Hernández
Nain de la Cruz
Jesús E. Soto-Soto
Carlos Hernández-Santos
author_facet Jose Isidro Hernández-Vega
Luis Alejandro Reynoso-Guajardo
Mario Carlos Gallardo-Morales
María Ernestina Macias-Arias
Amadeo Hernández
Nain de la Cruz
Jesús E. Soto-Soto
Carlos Hernández-Santos
author_sort Jose Isidro Hernández-Vega
collection DOAJ
description This paper presents a comprehensive analysis of the plastic injection molding process through the integration of data acquisition technologies and classification models. In collaboration with a company specializing in plastic injection, data were extracted directly from the machine during a specific period at the beginning of a shift change. These data were subjected to exploratory analysis to identify correlations between important variables, such as injection time, cycle time, and mold pressures. Additionally, classification models, including Random Forest and Logistic Regression, were constructed to predict and classify the process state based on these variables. The model results demonstrated high predictive performance, with 99.5% accuracy for Random Forest and 97% for Logistic Regression. These results provide a strong foundation for the early identification of potential problems and informed decision making to improve the efficiency of the plastic injection molding process. This study contributes to the advancement of the integration of intelligent technologies in industrial process optimization, aligned with the principles of Industry 4.0.
format Article
id doaj-art-dafe3c6aeff746528e76943cb407014c
institution OA Journals
issn 2076-3417
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-dafe3c6aeff746528e76943cb407014c2025-08-20T02:08:07ZengMDPI AGApplied Sciences2076-34172024-11-0114221027910.3390/app142210279Plastic Injection Molding Process Analysis: Data Integration and Modeling for Improved Production EfficiencyJose Isidro Hernández-Vega0Luis Alejandro Reynoso-Guajardo1Mario Carlos Gallardo-Morales2María Ernestina Macias-Arias3Amadeo Hernández4Nain de la Cruz5Jesús E. Soto-Soto6Carlos Hernández-Santos7División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Nuevo León, Mexico, Guadalupe 67170, Nuevo Leon, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Nuevo León, Mexico, Guadalupe 67170, Nuevo Leon, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Nuevo León, Mexico, Guadalupe 67170, Nuevo Leon, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Nuevo León, Mexico, Guadalupe 67170, Nuevo Leon, MexicoTecnológico Nacional de México/IT de Pachuca, Mexico, Blvd. Felipe Ángeles Km. 84.5, Venta Prieta, Pachuca de Soto 42083, Hidalgo, MexicoTecnológico Nacional de México/IT de Nuevo León, Mexico, Av. Eloy Cavazos 2001, Guadalupe 66170, Nuevo Leon, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Nuevo León, Mexico, Guadalupe 67170, Nuevo Leon, MexicoTecnológico Nacional de México/IT de Nuevo León, Mexico, Av. Eloy Cavazos 2001, Guadalupe 66170, Nuevo Leon, MexicoThis paper presents a comprehensive analysis of the plastic injection molding process through the integration of data acquisition technologies and classification models. In collaboration with a company specializing in plastic injection, data were extracted directly from the machine during a specific period at the beginning of a shift change. These data were subjected to exploratory analysis to identify correlations between important variables, such as injection time, cycle time, and mold pressures. Additionally, classification models, including Random Forest and Logistic Regression, were constructed to predict and classify the process state based on these variables. The model results demonstrated high predictive performance, with 99.5% accuracy for Random Forest and 97% for Logistic Regression. These results provide a strong foundation for the early identification of potential problems and informed decision making to improve the efficiency of the plastic injection molding process. This study contributes to the advancement of the integration of intelligent technologies in industrial process optimization, aligned with the principles of Industry 4.0.https://www.mdpi.com/2076-3417/14/22/10279plastic injections moldingindustrial processesmachine learningclassification modelrandom forestlogistic regression
spellingShingle Jose Isidro Hernández-Vega
Luis Alejandro Reynoso-Guajardo
Mario Carlos Gallardo-Morales
María Ernestina Macias-Arias
Amadeo Hernández
Nain de la Cruz
Jesús E. Soto-Soto
Carlos Hernández-Santos
Plastic Injection Molding Process Analysis: Data Integration and Modeling for Improved Production Efficiency
Applied Sciences
plastic injections molding
industrial processes
machine learning
classification model
random forest
logistic regression
title Plastic Injection Molding Process Analysis: Data Integration and Modeling for Improved Production Efficiency
title_full Plastic Injection Molding Process Analysis: Data Integration and Modeling for Improved Production Efficiency
title_fullStr Plastic Injection Molding Process Analysis: Data Integration and Modeling for Improved Production Efficiency
title_full_unstemmed Plastic Injection Molding Process Analysis: Data Integration and Modeling for Improved Production Efficiency
title_short Plastic Injection Molding Process Analysis: Data Integration and Modeling for Improved Production Efficiency
title_sort plastic injection molding process analysis data integration and modeling for improved production efficiency
topic plastic injections molding
industrial processes
machine learning
classification model
random forest
logistic regression
url https://www.mdpi.com/2076-3417/14/22/10279
work_keys_str_mv AT joseisidrohernandezvega plasticinjectionmoldingprocessanalysisdataintegrationandmodelingforimprovedproductionefficiency
AT luisalejandroreynosoguajardo plasticinjectionmoldingprocessanalysisdataintegrationandmodelingforimprovedproductionefficiency
AT mariocarlosgallardomorales plasticinjectionmoldingprocessanalysisdataintegrationandmodelingforimprovedproductionefficiency
AT mariaernestinamaciasarias plasticinjectionmoldingprocessanalysisdataintegrationandmodelingforimprovedproductionefficiency
AT amadeohernandez plasticinjectionmoldingprocessanalysisdataintegrationandmodelingforimprovedproductionefficiency
AT naindelacruz plasticinjectionmoldingprocessanalysisdataintegrationandmodelingforimprovedproductionefficiency
AT jesusesotosoto plasticinjectionmoldingprocessanalysisdataintegrationandmodelingforimprovedproductionefficiency
AT carloshernandezsantos plasticinjectionmoldingprocessanalysisdataintegrationandmodelingforimprovedproductionefficiency