An Orlicz-Besov Poincaré Inequality via John Domains
Denote by B˙⁎α,ϕ(Ω) the intrinsic Orlicz-Besov space, where α∈R, ϕ is a Young function, and Ω⊂Rn is a domain. For α∈(-n,0) and optimal ϕ, via John domains, we establish criteria for bounded domains Ω⊂Rn supporting an Orlicz-Besov Poincaré inequality. ‖u-uΩ‖Ln/|α|(Ω)≤C‖u‖B˙⁎α,ϕ(Ω) ∀u∈B˙⁎α,ϕ(Ω). This...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2019/5234507 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558136384290816 |
---|---|
author | Hongyan Sun |
author_facet | Hongyan Sun |
author_sort | Hongyan Sun |
collection | DOAJ |
description | Denote by B˙⁎α,ϕ(Ω) the intrinsic Orlicz-Besov space, where α∈R, ϕ is a Young function, and Ω⊂Rn is a domain. For α∈(-n,0) and optimal ϕ, via John domains, we establish criteria for bounded domains Ω⊂Rn supporting an Orlicz-Besov Poincaré inequality. ‖u-uΩ‖Ln/|α|(Ω)≤C‖u‖B˙⁎α,ϕ(Ω) ∀u∈B˙⁎α,ϕ(Ω). This extends the known criteria for bounded domains supporting Sobolev-Poincaré inequality and its fractional analogue. |
format | Article |
id | doaj-art-daf2bc7b99c04540a520931ccc39b1b4 |
institution | Kabale University |
issn | 2314-8896 2314-8888 |
language | English |
publishDate | 2019-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces |
spelling | doaj-art-daf2bc7b99c04540a520931ccc39b1b42025-02-03T01:33:08ZengWileyJournal of Function Spaces2314-88962314-88882019-01-01201910.1155/2019/52345075234507An Orlicz-Besov Poincaré Inequality via John DomainsHongyan Sun0Department of Sciences, China University of Geosciences, Beijing 100083, ChinaDenote by B˙⁎α,ϕ(Ω) the intrinsic Orlicz-Besov space, where α∈R, ϕ is a Young function, and Ω⊂Rn is a domain. For α∈(-n,0) and optimal ϕ, via John domains, we establish criteria for bounded domains Ω⊂Rn supporting an Orlicz-Besov Poincaré inequality. ‖u-uΩ‖Ln/|α|(Ω)≤C‖u‖B˙⁎α,ϕ(Ω) ∀u∈B˙⁎α,ϕ(Ω). This extends the known criteria for bounded domains supporting Sobolev-Poincaré inequality and its fractional analogue.http://dx.doi.org/10.1155/2019/5234507 |
spellingShingle | Hongyan Sun An Orlicz-Besov Poincaré Inequality via John Domains Journal of Function Spaces |
title | An Orlicz-Besov Poincaré Inequality via John Domains |
title_full | An Orlicz-Besov Poincaré Inequality via John Domains |
title_fullStr | An Orlicz-Besov Poincaré Inequality via John Domains |
title_full_unstemmed | An Orlicz-Besov Poincaré Inequality via John Domains |
title_short | An Orlicz-Besov Poincaré Inequality via John Domains |
title_sort | orlicz besov poincare inequality via john domains |
url | http://dx.doi.org/10.1155/2019/5234507 |
work_keys_str_mv | AT hongyansun anorliczbesovpoincareinequalityviajohndomains AT hongyansun orliczbesovpoincareinequalityviajohndomains |