New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with <i>ψ</i><sub><i>k</i></sub>-Raina’s Fractional Integrals for Differentiable Convex Functions

Starting from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Raina’s fractional integrals (&...

Full description

Saved in:
Bibliographic Details
Main Authors: Talib Hussain, Loredana Ciurdariu, Eugenia Grecu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/4/203
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850180418678030336
author Talib Hussain
Loredana Ciurdariu
Eugenia Grecu
author_facet Talib Hussain
Loredana Ciurdariu
Eugenia Grecu
author_sort Talib Hussain
collection DOAJ
description Starting from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Raina’s fractional integrals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-RFIs), the study obtains a new generalization of the Hermite–Hadamard–Mercer (H-H-M) inequality. Several trapezoid-type inequalities are constructed for functions whose derivatives of orders 1 and 2, in absolute value, are convex and involve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-RFIs. The results of the research are refinements of the Hermite–Hadamard (H-H) and H-H-M-type inequalities. For several types of fractional integrals—Riemann–Liouville (R-L), <i>k</i>-Riemann–Liouville (<i>k</i>-R-L), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Riemann–Liouville (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-R-L), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Riemann–Liouville (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-R-L), Raina’s, <i>k</i>-Raina’s, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Raina’s fractional integrals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-RFIs)—new inequalities of H-H and H-H-M-type are established, respectively. This article presents special cases of the main results and provides numerous examples with graphical illustrations to confirm the validity of the results. This study shows the efficiency of the findings with a couple of applications, taking into account the modified Bessel function and the q-digamma function.
format Article
id doaj-art-dacf1e44c8df4d0ab3eca1c4ff4969b7
institution OA Journals
issn 2504-3110
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-dacf1e44c8df4d0ab3eca1c4ff4969b72025-08-20T02:18:11ZengMDPI AGFractal and Fractional2504-31102025-03-019420310.3390/fractalfract9040203New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with <i>ψ</i><sub><i>k</i></sub>-Raina’s Fractional Integrals for Differentiable Convex FunctionsTalib Hussain0Loredana Ciurdariu1Eugenia Grecu2Department of Mathematics and Statistics, University of Agriculture Faisalabad, Faisalabad 38000, PakistanDepartment of Mathematics, Politehnica University of Timișoara, 300006 Timisoara, RomaniaDepartment of Management, Politehnica University of Timișoara, 300006 Timisoara, RomaniaStarting from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Raina’s fractional integrals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-RFIs), the study obtains a new generalization of the Hermite–Hadamard–Mercer (H-H-M) inequality. Several trapezoid-type inequalities are constructed for functions whose derivatives of orders 1 and 2, in absolute value, are convex and involve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-RFIs. The results of the research are refinements of the Hermite–Hadamard (H-H) and H-H-M-type inequalities. For several types of fractional integrals—Riemann–Liouville (R-L), <i>k</i>-Riemann–Liouville (<i>k</i>-R-L), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Riemann–Liouville (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-R-L), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-Riemann–Liouville (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>k</mi></msub></semantics></math></inline-formula>-R-L), Raina’s, <i>k</i>-Raina’s, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-Raina’s fractional integrals (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-RFIs)—new inequalities of H-H and H-H-M-type are established, respectively. This article presents special cases of the main results and provides numerous examples with graphical illustrations to confirm the validity of the results. This study shows the efficiency of the findings with a couple of applications, taking into account the modified Bessel function and the q-digamma function.https://www.mdpi.com/2504-3110/9/4/203<i>ψ<sub>k</sub></i>-Raina’s fractional integralsHermite–Hadamard–Mercer inequalityJensen–Mercer inequalityconvex functionBessel function<i>q</i>-digamma function
spellingShingle Talib Hussain
Loredana Ciurdariu
Eugenia Grecu
New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with <i>ψ</i><sub><i>k</i></sub>-Raina’s Fractional Integrals for Differentiable Convex Functions
Fractal and Fractional
<i>ψ<sub>k</sub></i>-Raina’s fractional integrals
Hermite–Hadamard–Mercer inequality
Jensen–Mercer inequality
convex function
Bessel function
<i>q</i>-digamma function
title New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with <i>ψ</i><sub><i>k</i></sub>-Raina’s Fractional Integrals for Differentiable Convex Functions
title_full New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with <i>ψ</i><sub><i>k</i></sub>-Raina’s Fractional Integrals for Differentiable Convex Functions
title_fullStr New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with <i>ψ</i><sub><i>k</i></sub>-Raina’s Fractional Integrals for Differentiable Convex Functions
title_full_unstemmed New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with <i>ψ</i><sub><i>k</i></sub>-Raina’s Fractional Integrals for Differentiable Convex Functions
title_short New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with <i>ψ</i><sub><i>k</i></sub>-Raina’s Fractional Integrals for Differentiable Convex Functions
title_sort new perspectives of hermite hadamard mercer type inequalities associated with i ψ i sub i k i sub raina s fractional integrals for differentiable convex functions
topic <i>ψ<sub>k</sub></i>-Raina’s fractional integrals
Hermite–Hadamard–Mercer inequality
Jensen–Mercer inequality
convex function
Bessel function
<i>q</i>-digamma function
url https://www.mdpi.com/2504-3110/9/4/203
work_keys_str_mv AT talibhussain newperspectivesofhermitehadamardmercertypeinequalitiesassociatedwithipsisubikisubrainasfractionalintegralsfordifferentiableconvexfunctions
AT loredanaciurdariu newperspectivesofhermitehadamardmercertypeinequalitiesassociatedwithipsisubikisubrainasfractionalintegralsfordifferentiableconvexfunctions
AT eugeniagrecu newperspectivesofhermitehadamardmercertypeinequalitiesassociatedwithipsisubikisubrainasfractionalintegralsfordifferentiableconvexfunctions