Basic Characteristics of Ionic Liquid-Gated Graphene FET Sensors for Nitrogen Cycle Monitoring in Agricultural Soil

Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics&g...

Full description

Saved in:
Bibliographic Details
Main Authors: Naoki Shiraishi, Jian Lu, Fatin Bazilah Fauzi, Ryo Imaizumi, Toyohiro Tsukahara, Satoshi Mogari, Shosuke Iida, Yusuke Matsukura, Satoshi Teramoto, Keisuke Yokoi, Izumi Ichinose, Mutsumi Kimura
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/15/1/55
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi mathvariant="normal">N</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>−</mo></mrow></msubsup></mrow></semantics></math></inline-formula>–N, which is absorbed by crops. However, some nitrogen is converted to nitrous oxide (N<sub>2</sub>O), a greenhouse gas with a warming potential about 300-times greater than carbon dioxide (CO<sub>2</sub>). Agricultural activities are the main source of N<sub>2</sub>O emissions. Monitoring N<sub>2</sub>O can enhance soil health and optimize nitrogen fertilizer use, thereby supporting precision agriculture. To achieve this, we developed ionic liquid-gated graphene field-effect transistor (FET) sensors to measure N<sub>2</sub>O concentrations in agricultural soil. We first fabricated and tested the electrical characteristics of the sensors. Then, we analyzed their transfer characteristics in our developed N<sub>2</sub>O evaluation system using different concentrations of N<sub>2</sub>O and air. The sensors demonstrated a negative shift in transfer characteristic curves when exposed to N<sub>2</sub>O, with a Dirac point voltage difference of 0.02 V between 1 and 10 ppm N<sub>2</sub>O diluted with pure air. These results demonstrate that the ionic liquid-gated graphene FET sensor is a promising device for N<sub>2</sub>O detection for agricultural soil applications.
ISSN:2079-6374