A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate models

<p>Aerosol–cloud interactions (ACIs) are a leading source of uncertainty in estimates of the historical effective radiative forcing (ERF). One reason for this uncertainty is the difficulty in estimating the ERF from aerosol–cloud interactions (ERFaci) in climate models, which typically require...

Full description

Saved in:
Bibliographic Details
Main Authors: B. M. Duran, C. J. Wall, N. J. Lutsko, T. Michibata, P.-L. Ma, Y. Qin, M. L. Duffy, B. Medeiros, M. Debolskiy
Format: Article
Language:English
Published: Copernicus Publications 2025-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/2123/2025/acp-25-2123-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850084828522741760
author B. M. Duran
C. J. Wall
C. J. Wall
N. J. Lutsko
T. Michibata
P.-L. Ma
Y. Qin
M. L. Duffy
M. L. Duffy
B. Medeiros
M. Debolskiy
author_facet B. M. Duran
C. J. Wall
C. J. Wall
N. J. Lutsko
T. Michibata
P.-L. Ma
Y. Qin
M. L. Duffy
M. L. Duffy
B. Medeiros
M. Debolskiy
author_sort B. M. Duran
collection DOAJ
description <p>Aerosol–cloud interactions (ACIs) are a leading source of uncertainty in estimates of the historical effective radiative forcing (ERF). One reason for this uncertainty is the difficulty in estimating the ERF from aerosol–cloud interactions (ERFaci) in climate models, which typically requires multiple calls to the radiation code. Most commonly used methods also cannot disentangle the contributions from different processes to ERFaci. Here, we develop a new, computationally efficient method for estimating the shortwave (SW) ERFaci from liquid clouds using histograms of monthly averaged cloud fraction partitioned by cloud droplet effective radius (<span class="inline-formula"><i>r</i><sub>e</sub></span>) and liquid water path (LWP). Multiplying the histograms with SW cloud radiative kernels gives the total SW ERFaci from liquid clouds, which can be decomposed into contributions from the Twomey effect, LWP adjustments, and cloud fraction (CF) adjustments. We test the method with data from five CMIP6-era models, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument simulator to generate the histograms. Our method gives similar total SW ERFaci estimates to other established methods in regions of prevalent liquid cloud and indicates that the Twomey effect, LWP adjustments, and CF adjustments have contributed <span class="inline-formula">−</span>0.34 <span class="inline-formula">±</span> 0.23, <span class="inline-formula">−</span>0.22 <span class="inline-formula">±</span> 0.13, and <span class="inline-formula">−</span>0.09 <span class="inline-formula">±</span> 0.11 W m<span class="inline-formula"><sup>−2</sup></span>, respectively, to the effective radiative forcing of the climate since 1850 in the ensemble mean (95 % confidence). These results demonstrate that widespread adoption of a MODIS <span class="inline-formula"><i>r</i><sub>e</sub></span>–LWP joint histogram diagnostic would allow the SW ERFaci and its components to be quickly and accurately diagnosed from climate model outputs, a crucial step for reducing uncertainty in the historical ERF.</p>
format Article
id doaj-art-dac17c249ef140908a8f34893f398b6c
institution DOAJ
issn 1680-7316
1680-7324
language English
publishDate 2025-02-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-dac17c249ef140908a8f34893f398b6c2025-08-20T02:43:54ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-02-01252123214610.5194/acp-25-2123-2025A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate modelsB. M. Duran0C. J. Wall1C. J. Wall2N. J. Lutsko3T. Michibata4P.-L. Ma5Y. Qin6M. L. Duffy7M. L. Duffy8B. Medeiros9M. Debolskiy10Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USADepartment of Geosciences, University of Oslo, Oslo, Norwaynow at: Department of Meteorology, Stockholm University, 106 91 Stockholm, SwedenScripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USAResearch Institute for Applied Mechanics, Kyushu University, Fukuoka, JapanPacific Northwest National Laboratory, Richland, WA, USAPacific Northwest National Laboratory, Richland, WA, USANSF National Center for Atmospheric Research, Boulder, CO, USAnow at: Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USANSF National Center for Atmospheric Research, Boulder, CO, USADepartment of Geosciences, University of Oslo, Oslo, Norway<p>Aerosol–cloud interactions (ACIs) are a leading source of uncertainty in estimates of the historical effective radiative forcing (ERF). One reason for this uncertainty is the difficulty in estimating the ERF from aerosol–cloud interactions (ERFaci) in climate models, which typically requires multiple calls to the radiation code. Most commonly used methods also cannot disentangle the contributions from different processes to ERFaci. Here, we develop a new, computationally efficient method for estimating the shortwave (SW) ERFaci from liquid clouds using histograms of monthly averaged cloud fraction partitioned by cloud droplet effective radius (<span class="inline-formula"><i>r</i><sub>e</sub></span>) and liquid water path (LWP). Multiplying the histograms with SW cloud radiative kernels gives the total SW ERFaci from liquid clouds, which can be decomposed into contributions from the Twomey effect, LWP adjustments, and cloud fraction (CF) adjustments. We test the method with data from five CMIP6-era models, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument simulator to generate the histograms. Our method gives similar total SW ERFaci estimates to other established methods in regions of prevalent liquid cloud and indicates that the Twomey effect, LWP adjustments, and CF adjustments have contributed <span class="inline-formula">−</span>0.34 <span class="inline-formula">±</span> 0.23, <span class="inline-formula">−</span>0.22 <span class="inline-formula">±</span> 0.13, and <span class="inline-formula">−</span>0.09 <span class="inline-formula">±</span> 0.11 W m<span class="inline-formula"><sup>−2</sup></span>, respectively, to the effective radiative forcing of the climate since 1850 in the ensemble mean (95 % confidence). These results demonstrate that widespread adoption of a MODIS <span class="inline-formula"><i>r</i><sub>e</sub></span>–LWP joint histogram diagnostic would allow the SW ERFaci and its components to be quickly and accurately diagnosed from climate model outputs, a crucial step for reducing uncertainty in the historical ERF.</p>https://acp.copernicus.org/articles/25/2123/2025/acp-25-2123-2025.pdf
spellingShingle B. M. Duran
C. J. Wall
C. J. Wall
N. J. Lutsko
T. Michibata
P.-L. Ma
Y. Qin
M. L. Duffy
M. L. Duffy
B. Medeiros
M. Debolskiy
A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate models
Atmospheric Chemistry and Physics
title A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate models
title_full A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate models
title_fullStr A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate models
title_full_unstemmed A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate models
title_short A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate models
title_sort new method for diagnosing effective radiative forcing from aerosol cloud interactions in climate models
url https://acp.copernicus.org/articles/25/2123/2025/acp-25-2123-2025.pdf
work_keys_str_mv AT bmduran anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT cjwall anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT cjwall anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT njlutsko anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT tmichibata anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT plma anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT yqin anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT mlduffy anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT mlduffy anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT bmedeiros anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT mdebolskiy anewmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT bmduran newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT cjwall newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT cjwall newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT njlutsko newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT tmichibata newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT plma newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT yqin newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT mlduffy newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT mlduffy newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT bmedeiros newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels
AT mdebolskiy newmethodfordiagnosingeffectiveradiativeforcingfromaerosolcloudinteractionsinclimatemodels