A new method for diagnosing effective radiative forcing from aerosol–cloud interactions in climate models

<p>Aerosol–cloud interactions (ACIs) are a leading source of uncertainty in estimates of the historical effective radiative forcing (ERF). One reason for this uncertainty is the difficulty in estimating the ERF from aerosol–cloud interactions (ERFaci) in climate models, which typically require...

Full description

Saved in:
Bibliographic Details
Main Authors: B. M. Duran, C. J. Wall, N. J. Lutsko, T. Michibata, P.-L. Ma, Y. Qin, M. L. Duffy, B. Medeiros, M. Debolskiy
Format: Article
Language:English
Published: Copernicus Publications 2025-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/2123/2025/acp-25-2123-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<p>Aerosol–cloud interactions (ACIs) are a leading source of uncertainty in estimates of the historical effective radiative forcing (ERF). One reason for this uncertainty is the difficulty in estimating the ERF from aerosol–cloud interactions (ERFaci) in climate models, which typically requires multiple calls to the radiation code. Most commonly used methods also cannot disentangle the contributions from different processes to ERFaci. Here, we develop a new, computationally efficient method for estimating the shortwave (SW) ERFaci from liquid clouds using histograms of monthly averaged cloud fraction partitioned by cloud droplet effective radius (<span class="inline-formula"><i>r</i><sub>e</sub></span>) and liquid water path (LWP). Multiplying the histograms with SW cloud radiative kernels gives the total SW ERFaci from liquid clouds, which can be decomposed into contributions from the Twomey effect, LWP adjustments, and cloud fraction (CF) adjustments. We test the method with data from five CMIP6-era models, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument simulator to generate the histograms. Our method gives similar total SW ERFaci estimates to other established methods in regions of prevalent liquid cloud and indicates that the Twomey effect, LWP adjustments, and CF adjustments have contributed <span class="inline-formula">−</span>0.34 <span class="inline-formula">±</span> 0.23, <span class="inline-formula">−</span>0.22 <span class="inline-formula">±</span> 0.13, and <span class="inline-formula">−</span>0.09 <span class="inline-formula">±</span> 0.11 W m<span class="inline-formula"><sup>−2</sup></span>, respectively, to the effective radiative forcing of the climate since 1850 in the ensemble mean (95 % confidence). These results demonstrate that widespread adoption of a MODIS <span class="inline-formula"><i>r</i><sub>e</sub></span>–LWP joint histogram diagnostic would allow the SW ERFaci and its components to be quickly and accurately diagnosed from climate model outputs, a crucial step for reducing uncertainty in the historical ERF.</p>
ISSN:1680-7316
1680-7324