A feature-based approach for atlas selection in automatic pelvic segmentation.

Accurate and efficient automatic segmentation is essential for various clinical tasks such as radiotherapy treatment planning. However, atlas-based segmentation still faces challenges due to the lack of representative atlas dataset and the computational limitations of deformation algorithms. In this...

Full description

Saved in:
Bibliographic Details
Main Authors: Guoping Shan, Xue Bai, Yun Ge, Binbing Wang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0317801&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate and efficient automatic segmentation is essential for various clinical tasks such as radiotherapy treatment planning. However, atlas-based segmentation still faces challenges due to the lack of representative atlas dataset and the computational limitations of deformation algorithms. In this work, we have proposed an atlas selection procedure (subset atlas grouping approach, MAS-SAGA) which utilized both image similarity and volume features for selecting the best-fitting atlases for contour propagation. A dataset of anonymized female pelvic Computed Tomography (CT) images demonstrated that MAS-SAGA significantly outperforms conventional multi-atlas-based segmentation (cMAS) in terms of Dice Similarity Coefficient (DSC) and 95th Percentile Hausdorff Distance (95HD) for bladder and rectum segmentation using a three-fold cross-validation strategy. The proposed procedure also reduced computation time compared to cMAS, making it a promising tool for medical image analysis applications. In addition, we have evaluated two distinct atlas selection methods: the Feature-based Atlas Selection Approach (MAS-FASA) and the Similarity-based Atlas Selection Approach (MAS-SIM). We investigate the differences between these two methods in terms of their ability to select the best fitting atlases. The findings demonstrated that MAS-FASA selected different atlases than MAS-SIM, resulting in improved segmentation performance overall. It highlighted the potential of feature-based subgrouping techniques in enhancing the efficacy of MAS algorithms in the field of medical image segmentation.
ISSN:1932-6203