A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings

To overcome the difficulty in early fault diagnosis with weak fault characteristics of rolling bearings that are easily drowned out by noise in the complex operation environment, an early fault diagnosis method was proposed by integrating the improved artificial gorilla troops optimizer (IGTO) algor...

Full description

Saved in:
Bibliographic Details
Main Authors: SUN Meng, GAO Bingpeng, CHENG Jing
Format: Article
Language:zho
Published: Editorial Office of Journal of Mechanical Strength 2025-06-01
Series:Jixie qiangdu
Subjects:
Online Access:http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2025.06.003
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850222085147721728
author SUN Meng
GAO Bingpeng
CHENG Jing
author_facet SUN Meng
GAO Bingpeng
CHENG Jing
author_sort SUN Meng
collection DOAJ
description To overcome the difficulty in early fault diagnosis with weak fault characteristics of rolling bearings that are easily drowned out by noise in the complex operation environment, an early fault diagnosis method was proposed by integrating the improved artificial gorilla troops optimizer (IGTO) algorithm, the optimized resonance-based sparse signal decomposition (RSSD), multi-parameter and sparse maximum harmonics-to-noise-ratio deconvolution (SMHD) method. Firstly, taking the squared envelope spectrum correlated kurtosis (SE-SCK) negative value of the low resonance component as the objective function, IGTO was used to simultaneously optimize the quality factor <inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mi>Q</mi></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M004.jpg"><?fx-imagestate width="2.37066650" height="2.87866688"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M004c.jpg"><?fx-imagestate width="2.37066650" height="2.87866688"?></graphic></alternatives></inline-formula>, weight coefficient <inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mi>λ</mi></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M005.jpg"><?fx-imagestate width="1.52400005" height="2.28600001"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M005c.jpg"><?fx-imagestate width="1.52400005" height="2.28600001"?></graphic></alternatives></inline-formula> and Lagrange multiplier <inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mi>μ</mi></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M006.jpg"><?fx-imagestate width="1.77800000" height="2.96333337"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M006c.jpg"><?fx-imagestate width="1.77800000" height="2.96333337"?></graphic></alternatives></inline-formula> of RSSD, for the achievement of the optimal matching of wavelet basis function and dissipation function. Secondly, the obtained optimal low resonance component was inputed into SMHD for filtering processing. Finally, the fault features were extracted by the perform envelope spectrum analysis. The algorithm comparison experiments show that the proposed IGTO algorithm has significantly improved optimization performance. The results of simulation and XJTU-SY bearing full life cycle fault signal test show that the proposed method is more useful in extracting early weak fault characteristics of bearings.
format Article
id doaj-art-da5f2fe3b28849639ebc8c4467fded32
institution OA Journals
issn 1001-9669
language zho
publishDate 2025-06-01
publisher Editorial Office of Journal of Mechanical Strength
record_format Article
series Jixie qiangdu
spelling doaj-art-da5f2fe3b28849639ebc8c4467fded322025-08-20T02:06:28ZzhoEditorial Office of Journal of Mechanical StrengthJixie qiangdu1001-96692025-06-01471726109626103A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearingsSUN MengGAO BingpengCHENG JingTo overcome the difficulty in early fault diagnosis with weak fault characteristics of rolling bearings that are easily drowned out by noise in the complex operation environment, an early fault diagnosis method was proposed by integrating the improved artificial gorilla troops optimizer (IGTO) algorithm, the optimized resonance-based sparse signal decomposition (RSSD), multi-parameter and sparse maximum harmonics-to-noise-ratio deconvolution (SMHD) method. Firstly, taking the squared envelope spectrum correlated kurtosis (SE-SCK) negative value of the low resonance component as the objective function, IGTO was used to simultaneously optimize the quality factor <inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mi>Q</mi></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M004.jpg"><?fx-imagestate width="2.37066650" height="2.87866688"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M004c.jpg"><?fx-imagestate width="2.37066650" height="2.87866688"?></graphic></alternatives></inline-formula>, weight coefficient <inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mi>λ</mi></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M005.jpg"><?fx-imagestate width="1.52400005" height="2.28600001"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M005c.jpg"><?fx-imagestate width="1.52400005" height="2.28600001"?></graphic></alternatives></inline-formula> and Lagrange multiplier <inline-formula><alternatives><math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mi>μ</mi></math><graphic specific-use="big" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M006.jpg"><?fx-imagestate width="1.77800000" height="2.96333337"?></graphic><graphic specific-use="small" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="alternativeImage/C5FF0B59-9E2C-4918-8B97-9DFF64EDE211-M006c.jpg"><?fx-imagestate width="1.77800000" height="2.96333337"?></graphic></alternatives></inline-formula> of RSSD, for the achievement of the optimal matching of wavelet basis function and dissipation function. Secondly, the obtained optimal low resonance component was inputed into SMHD for filtering processing. Finally, the fault features were extracted by the perform envelope spectrum analysis. The algorithm comparison experiments show that the proposed IGTO algorithm has significantly improved optimization performance. The results of simulation and XJTU-SY bearing full life cycle fault signal test show that the proposed method is more useful in extracting early weak fault characteristics of bearings.http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2025.06.003Improved artificial gorilla troops algorithmResonance sparse decompositionSquare envelope spectrum correlation kurtosisSparse maximum harmonics-to-noise-ratio deconvolutionEarly fault diagnosis
spellingShingle SUN Meng
GAO Bingpeng
CHENG Jing
A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings
Jixie qiangdu
Improved artificial gorilla troops algorithm
Resonance sparse decomposition
Square envelope spectrum correlation kurtosis
Sparse maximum harmonics-to-noise-ratio deconvolution
Early fault diagnosis
title A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings
title_full A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings
title_fullStr A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings
title_full_unstemmed A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings
title_short A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings
title_sort feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings
topic Improved artificial gorilla troops algorithm
Resonance sparse decomposition
Square envelope spectrum correlation kurtosis
Sparse maximum harmonics-to-noise-ratio deconvolution
Early fault diagnosis
url http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2025.06.003
work_keys_str_mv AT sunmeng afeatureextractionmethodbasedonimprovedresonancesparsedecompositionforearlyfaultsinrollingbearings
AT gaobingpeng afeatureextractionmethodbasedonimprovedresonancesparsedecompositionforearlyfaultsinrollingbearings
AT chengjing afeatureextractionmethodbasedonimprovedresonancesparsedecompositionforearlyfaultsinrollingbearings
AT sunmeng featureextractionmethodbasedonimprovedresonancesparsedecompositionforearlyfaultsinrollingbearings
AT gaobingpeng featureextractionmethodbasedonimprovedresonancesparsedecompositionforearlyfaultsinrollingbearings
AT chengjing featureextractionmethodbasedonimprovedresonancesparsedecompositionforearlyfaultsinrollingbearings