Automation of Multi-Class Microscopy Image Classification Based on the Microorganisms Taxonomic Features Extraction

This study presents a unified low-parameter approach to multi-class classification of microorganisms (micrococci, diplococci, streptococci, and bacilli) based on automated machine learning. The method is designed to produce interpretable taxonomic descriptors through analysis of the external geometr...

Full description

Saved in:
Bibliographic Details
Main Authors: Aleksei Samarin, Alexander Savelev, Aleksei Toropov, Aleksandra Dozortseva, Egor Kotenko, Artem Nazarenko, Alexander Motyko, Galiya Narova, Elena Mikhailova, Valentin Malykh
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/11/6/201
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a unified low-parameter approach to multi-class classification of microorganisms (micrococci, diplococci, streptococci, and bacilli) based on automated machine learning. The method is designed to produce interpretable taxonomic descriptors through analysis of the external geometric characteristics of microorganisms, including cell shape, colony organization, and dynamic behavior in unfixed microscopic scenes. A key advantage of the proposed approach is its lightweight nature: the resulting models have significantly fewer parameters than deep learning-based alternatives, enabling fast inference even on standard CPU hardware. An annotated dataset containing images of four bacterial types obtained under conditions simulating real clinical trials has been developed and published to validate the method. The results (Precision = 0.910, Recall = 0.901, and F1-score = 0.905) confirm the effectiveness of the proposed method for biomedical diagnostic tasks, especially in settings with limited computational resources and a need for feature interpretability. Our approach demonstrates performance comparable to state-of-the-art methods while offering superior efficiency and lightweight design due to its significantly reduced number of parameters.
ISSN:2313-433X