Assigning function to natural allelic variation via dynamic modeling of gene network induction

Abstract More and more natural DNA variants are being linked to physiological traits. Yet, understanding what differences they make on molecular regulations remains challenging. Important properties of gene regulatory networks can be captured by computational models. If model parameters can be “pers...

Full description

Saved in:
Bibliographic Details
Main Authors: Magali Richard, Florent Chuffart, Hélène Duplus‐Bottin, Fanny Pouyet, Martin Spichty, Etienne Fulcrand, Marianne Entrevan, Audrey Barthelaix, Michael Springer, Daniel Jost, Gaël Yvert
Format: Article
Language:English
Published: Springer Nature 2018-01-01
Series:Molecular Systems Biology
Subjects:
Online Access:https://doi.org/10.15252/msb.20177803
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849341940806451200
author Magali Richard
Florent Chuffart
Hélène Duplus‐Bottin
Fanny Pouyet
Martin Spichty
Etienne Fulcrand
Marianne Entrevan
Audrey Barthelaix
Michael Springer
Daniel Jost
Gaël Yvert
author_facet Magali Richard
Florent Chuffart
Hélène Duplus‐Bottin
Fanny Pouyet
Martin Spichty
Etienne Fulcrand
Marianne Entrevan
Audrey Barthelaix
Michael Springer
Daniel Jost
Gaël Yvert
author_sort Magali Richard
collection DOAJ
description Abstract More and more natural DNA variants are being linked to physiological traits. Yet, understanding what differences they make on molecular regulations remains challenging. Important properties of gene regulatory networks can be captured by computational models. If model parameters can be “personalized” according to the genotype, their variation may then reveal how DNA variants operate in the network. Here, we combined experiments and computations to visualize natural alleles of the yeast GAL3 gene in a space of model parameters describing the galactose response network. Alleles altering the activation of Gal3p by galactose were discriminated from those affecting its activity (production/degradation or efficiency of the activated protein). The approach allowed us to correctly predict that a non‐synonymous SNP would change the binding affinity of Gal3p with the Gal80p transcriptional repressor. Our results illustrate how personalizing gene regulatory models can be used for the mechanistic interpretation of genetic variants.
format Article
id doaj-art-da4d897778de4a1fab0220c6da443b32
institution Kabale University
issn 1744-4292
language English
publishDate 2018-01-01
publisher Springer Nature
record_format Article
series Molecular Systems Biology
spelling doaj-art-da4d897778de4a1fab0220c6da443b322025-08-20T03:43:31ZengSpringer NatureMolecular Systems Biology1744-42922018-01-0114111610.15252/msb.20177803Assigning function to natural allelic variation via dynamic modeling of gene network inductionMagali Richard0Florent Chuffart1Hélène Duplus‐Bottin2Fanny Pouyet3Martin Spichty4Etienne Fulcrand5Marianne Entrevan6Audrey Barthelaix7Michael Springer8Daniel Jost9Gaël Yvert10Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de LyonLaboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de LyonLaboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de LyonLaboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de LyonLaboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de LyonLaboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de LyonLaboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de LyonLaboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de LyonDepartment of Systems Biology, Harvard Medical SchoolUniv. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC‐IMAGLaboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Université de LyonAbstract More and more natural DNA variants are being linked to physiological traits. Yet, understanding what differences they make on molecular regulations remains challenging. Important properties of gene regulatory networks can be captured by computational models. If model parameters can be “personalized” according to the genotype, their variation may then reveal how DNA variants operate in the network. Here, we combined experiments and computations to visualize natural alleles of the yeast GAL3 gene in a space of model parameters describing the galactose response network. Alleles altering the activation of Gal3p by galactose were discriminated from those affecting its activity (production/degradation or efficiency of the activated protein). The approach allowed us to correctly predict that a non‐synonymous SNP would change the binding affinity of Gal3p with the Gal80p transcriptional repressor. Our results illustrate how personalizing gene regulatory models can be used for the mechanistic interpretation of genetic variants.https://doi.org/10.15252/msb.20177803galactosepersonalized medicineSNP functionstochastic modelyeast
spellingShingle Magali Richard
Florent Chuffart
Hélène Duplus‐Bottin
Fanny Pouyet
Martin Spichty
Etienne Fulcrand
Marianne Entrevan
Audrey Barthelaix
Michael Springer
Daniel Jost
Gaël Yvert
Assigning function to natural allelic variation via dynamic modeling of gene network induction
Molecular Systems Biology
galactose
personalized medicine
SNP function
stochastic model
yeast
title Assigning function to natural allelic variation via dynamic modeling of gene network induction
title_full Assigning function to natural allelic variation via dynamic modeling of gene network induction
title_fullStr Assigning function to natural allelic variation via dynamic modeling of gene network induction
title_full_unstemmed Assigning function to natural allelic variation via dynamic modeling of gene network induction
title_short Assigning function to natural allelic variation via dynamic modeling of gene network induction
title_sort assigning function to natural allelic variation via dynamic modeling of gene network induction
topic galactose
personalized medicine
SNP function
stochastic model
yeast
url https://doi.org/10.15252/msb.20177803
work_keys_str_mv AT magalirichard assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT florentchuffart assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT heleneduplusbottin assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT fannypouyet assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT martinspichty assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT etiennefulcrand assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT marianneentrevan assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT audreybarthelaix assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT michaelspringer assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT danieljost assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction
AT gaelyvert assigningfunctiontonaturalallelicvariationviadynamicmodelingofgenenetworkinduction