Essentially Retractable Modules

We call a module  essentially retractable if HomR for all essential submodules N of M. For a right FBN ring R, it is shown that: (i)  A non-zero module  is retractable (in the sense that HomR for all non-zero ) if and only if certain factor modules of M are essentially retractable nonsingular module...

Full description

Saved in:
Bibliographic Details
Main Author: M.R. Vedadi
Format: Article
Language:English
Published: University of Tehran 2007-12-01
Series:Journal of Sciences, Islamic Republic of Iran
Subjects:
Online Access:https://jsciences.ut.ac.ir/article_35080_daa38f2a160fc3e3a8b0aafa70c41eff.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850269414283280384
author M.R. Vedadi
author_facet M.R. Vedadi
author_sort M.R. Vedadi
collection DOAJ
description We call a module  essentially retractable if HomR for all essential submodules N of M. For a right FBN ring R, it is shown that: (i)  A non-zero module  is retractable (in the sense that HomR for all non-zero ) if and only if certain factor modules of M are essentially retractable nonsingular modules over R modulo their annihilators. (ii)  A non-zero module  is essentially retractable if and only if there exists a prime ideal  such that HomR. Over semiprime right nonsingular rings, a nonsingular essentially retractable module is precisely a module with non-zero dual. Moreover, over certain rings R, including right FBN rings, it is shown that a nonsingular module M with enough uniforms is essentially retractable if and only if there exist uniform retractable R-modules  and R-homomorphisms  with .
format Article
id doaj-art-da4d506df78d4ce88775f3273b84787d
institution OA Journals
issn 1016-1104
2345-6914
language English
publishDate 2007-12-01
publisher University of Tehran
record_format Article
series Journal of Sciences, Islamic Republic of Iran
spelling doaj-art-da4d506df78d4ce88775f3273b84787d2025-08-20T01:53:08ZengUniversity of TehranJournal of Sciences, Islamic Republic of Iran1016-11042345-69142007-12-0118435536035080Essentially Retractable ModulesM.R. Vedadi0Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of IranWe call a module  essentially retractable if HomR for all essential submodules N of M. For a right FBN ring R, it is shown that: (i)  A non-zero module  is retractable (in the sense that HomR for all non-zero ) if and only if certain factor modules of M are essentially retractable nonsingular modules over R modulo their annihilators. (ii)  A non-zero module  is essentially retractable if and only if there exists a prime ideal  such that HomR. Over semiprime right nonsingular rings, a nonsingular essentially retractable module is precisely a module with non-zero dual. Moreover, over certain rings R, including right FBN rings, it is shown that a nonsingular module M with enough uniforms is essentially retractable if and only if there exist uniform retractable R-modules  and R-homomorphisms  with .https://jsciences.ut.ac.ir/article_35080_daa38f2a160fc3e3a8b0aafa70c41eff.pdfdual moduleessentially retractablehomo-related
spellingShingle M.R. Vedadi
Essentially Retractable Modules
Journal of Sciences, Islamic Republic of Iran
dual module
essentially retractable
homo-related
title Essentially Retractable Modules
title_full Essentially Retractable Modules
title_fullStr Essentially Retractable Modules
title_full_unstemmed Essentially Retractable Modules
title_short Essentially Retractable Modules
title_sort essentially retractable modules
topic dual module
essentially retractable
homo-related
url https://jsciences.ut.ac.ir/article_35080_daa38f2a160fc3e3a8b0aafa70c41eff.pdf
work_keys_str_mv AT mrvedadi essentiallyretractablemodules