Weakly toll convexity and proper interval graphs
A walk $u_0u_1 \ldots u_{k-1}u_k$ is a \textit{weakly toll walk} if $u_0u_i \in E(G)$ implies $u_i = u_1$ and $u_ju_k\in E(G)$ implies $u_j=u_{k-1}$. A set $S$ of vertices of $G$ is {\it weakly toll convex} if for any two non-adjacent vertices $x,y \in S$ any vertex in a weakly toll walk between $x$...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Discrete Mathematics & Theoretical Computer Science
2024-04-01
|
| Series: | Discrete Mathematics & Theoretical Computer Science |
| Subjects: | |
| Online Access: | http://dmtcs.episciences.org/9837/pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!