Separating Subjective from Objective Food Value in the Human Insula: An Exploratory Study Using Intracranial EEG

<b>Background/Objectives</b>: The human insula is a key structure implicated in integrating internal states and external food cues, yet its precise role remains unclear, in part due to the temporal limitations of neuroimaging techniques like fMRI. To address this gap, we conducted an exp...

Full description

Saved in:
Bibliographic Details
Main Authors: Benjamin Hébert-Seropian, Olivier Boucher, Daphné Citherlet, Manon Robert, François Richer, Dang Khoa Nguyen
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Brain Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3425/15/6/593
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<b>Background/Objectives</b>: The human insula is a key structure implicated in integrating internal states and external food cues, yet its precise role remains unclear, in part due to the temporal limitations of neuroimaging techniques like fMRI. To address this gap, we conducted an exploratory study using an intracranial EEG (iEEG) to investigate how the insula encodes both the subjective and objective properties of food-related stimuli, and how this encoding is modulated by hunger and satiety. <b>Methods</b>: Eight patients with drug-resistant epilepsy undergoing a pre-surgical evaluation between 2017 and 2023 participated in this study. Depth electrodes implanted in the insular cortex recorded event-related potentials (ERPs) in response to visual food cues. The sessions were conducted in two prandial states (hungry and satiated). The subjective ratings (appetite and palatability) and objective nutritional values (e.g., calories, carbohydrates) were collected and analyzed using paired t-tests, MANOVAs, and partial correlations. <b>Results</b>: Hunger increased the ERP amplitudes within the 350–450 ms interval, consistent with the EPIC model and positive alliesthesia, while satiety unexpectedly enhanced the early responses (150–250 ms). Importantly, the neural activity related to nutritional values was largely uncorrelated with the subjective ratings, suggestive of distinct processing streams. The mid- and posterior insula showed greater sensitivity to both subjective and nutritional information than the anterior insula. <b>Conclusions</b>: These findings offer novel electrophysiological insights into how the insula differentiates between implicit and explicit food-related signals, depending on the homeostatic state. This work supports a dual-route model of food cue processing, and may inform interventions targeting insular activity in disordered eating.
ISSN:2076-3425