GR-Athena++: General-relativistic Magnetohydrodynamics Simulations of Neutron Star Spacetimes

We present the extension of GR-Athena++ to general-relativistic magnetohydrodynamics (GRMHD) for applications to neutron star spacetimes. The new solver couples the constrained transport implementation of Athena++ to the Z4c formulation of the Einstein equations to simulate dynamical spacetimes with...

Full description

Saved in:
Bibliographic Details
Main Authors: William Cook, Boris Daszuta, Jacob Fields, Peter Hammond, Simone Albanesi, Francesco Zappa, Sebastiano Bernuzzi, David Radice
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal Supplement Series
Subjects:
Online Access:https://doi.org/10.3847/1538-4365/ad87d4
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823856462114324480
author William Cook
Boris Daszuta
Jacob Fields
Peter Hammond
Simone Albanesi
Francesco Zappa
Sebastiano Bernuzzi
David Radice
author_facet William Cook
Boris Daszuta
Jacob Fields
Peter Hammond
Simone Albanesi
Francesco Zappa
Sebastiano Bernuzzi
David Radice
author_sort William Cook
collection DOAJ
description We present the extension of GR-Athena++ to general-relativistic magnetohydrodynamics (GRMHD) for applications to neutron star spacetimes. The new solver couples the constrained transport implementation of Athena++ to the Z4c formulation of the Einstein equations to simulate dynamical spacetimes with GRMHD using oct-tree adaptive mesh refinement. We consider benchmark problems for isolated and binary neutron star spacetimes demonstrating stable and convergent results at relatively low resolutions and without grid symmetries imposed. The code correctly captures magnetic field instabilities in nonrotating stars with total relative violation of the divergence-free constraint of 10 ^−16 . It handles evolutions with a microphysical equation of state and black hole formation in the gravitational collapse of a rapidly rotating star. For binaries, we demonstrate correctness of the evolution under the gravitational radiation reaction and show convergence of gravitational waveforms. We showcase the use of adaptive mesh refinement to resolve the Kelvin–Helmholtz instability at the collisional interface in a merger of magnetised binary neutron stars. GR-Athena++ shows strong scaling efficiencies above 80% in excess of 10 ^5 CPU cores and excellent weak scaling is shown up to ∼5 × 10 ^5 CPU cores in a realistic production setup. GR-Athena++ allows for the robust simulation of GRMHD flows in strong and dynamical gravity with exa-scale computers.
format Article
id doaj-art-d9f0aa4d27e9478f9f8a5bc1ad2e004a
institution Kabale University
issn 0067-0049
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Supplement Series
spelling doaj-art-d9f0aa4d27e9478f9f8a5bc1ad2e004a2025-02-12T08:59:37ZengIOP PublishingThe Astrophysical Journal Supplement Series0067-00492025-01-012771310.3847/1538-4365/ad87d4GR-Athena++: General-relativistic Magnetohydrodynamics Simulations of Neutron Star SpacetimesWilliam Cook0https://orcid.org/0000-0003-2244-3462Boris Daszuta1Jacob Fields2https://orcid.org/0000-0001-5705-1712Peter Hammond3Simone Albanesi4https://orcid.org/0000-0001-7345-4415Francesco Zappa5Sebastiano Bernuzzi6https://orcid.org/0000-0002-2334-0935David Radice7https://orcid.org/0000-0001-6982-1008Theoretisch-Physikalisches Institut , Friedrich-Schiller-Universität Jena, 07743 Jena, Germany ; william.cook@uni-jena.deTheoretisch-Physikalisches Institut , Friedrich-Schiller-Universität Jena, 07743 Jena, Germany ; william.cook@uni-jena.deInstitute for Gravitation and the Cosmos, The Pennsylvania State University , University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University , University Park, PA 16802, USAInstitute for Gravitation and the Cosmos, The Pennsylvania State University , University Park, PA 16802, USADipartimento di Fisica, Universitá di Torino , Torino 10125, Italy; INFN Sezione di Torino , Torino 10125, ItalyTheoretisch-Physikalisches Institut , Friedrich-Schiller-Universität Jena, 07743 Jena, Germany ; william.cook@uni-jena.deTheoretisch-Physikalisches Institut , Friedrich-Schiller-Universität Jena, 07743 Jena, Germany ; william.cook@uni-jena.deInstitute for Gravitation and the Cosmos, The Pennsylvania State University , University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University , University Park, PA 16802, USA; Department of Astronomy and Astrophysics, The Pennsylvania State University , University Park, PA 16802, USAWe present the extension of GR-Athena++ to general-relativistic magnetohydrodynamics (GRMHD) for applications to neutron star spacetimes. The new solver couples the constrained transport implementation of Athena++ to the Z4c formulation of the Einstein equations to simulate dynamical spacetimes with GRMHD using oct-tree adaptive mesh refinement. We consider benchmark problems for isolated and binary neutron star spacetimes demonstrating stable and convergent results at relatively low resolutions and without grid symmetries imposed. The code correctly captures magnetic field instabilities in nonrotating stars with total relative violation of the divergence-free constraint of 10 ^−16 . It handles evolutions with a microphysical equation of state and black hole formation in the gravitational collapse of a rapidly rotating star. For binaries, we demonstrate correctness of the evolution under the gravitational radiation reaction and show convergence of gravitational waveforms. We showcase the use of adaptive mesh refinement to resolve the Kelvin–Helmholtz instability at the collisional interface in a merger of magnetised binary neutron stars. GR-Athena++ shows strong scaling efficiencies above 80% in excess of 10 ^5 CPU cores and excellent weak scaling is shown up to ∼5 × 10 ^5 CPU cores in a realistic production setup. GR-Athena++ allows for the robust simulation of GRMHD flows in strong and dynamical gravity with exa-scale computers.https://doi.org/10.3847/1538-4365/ad87d4Compact binary starsGravitational wavesGeneral relativityMagnetohydrodynamicsMagnetohydrodynamical simulationsNeutron stars
spellingShingle William Cook
Boris Daszuta
Jacob Fields
Peter Hammond
Simone Albanesi
Francesco Zappa
Sebastiano Bernuzzi
David Radice
GR-Athena++: General-relativistic Magnetohydrodynamics Simulations of Neutron Star Spacetimes
The Astrophysical Journal Supplement Series
Compact binary stars
Gravitational waves
General relativity
Magnetohydrodynamics
Magnetohydrodynamical simulations
Neutron stars
title GR-Athena++: General-relativistic Magnetohydrodynamics Simulations of Neutron Star Spacetimes
title_full GR-Athena++: General-relativistic Magnetohydrodynamics Simulations of Neutron Star Spacetimes
title_fullStr GR-Athena++: General-relativistic Magnetohydrodynamics Simulations of Neutron Star Spacetimes
title_full_unstemmed GR-Athena++: General-relativistic Magnetohydrodynamics Simulations of Neutron Star Spacetimes
title_short GR-Athena++: General-relativistic Magnetohydrodynamics Simulations of Neutron Star Spacetimes
title_sort gr athena general relativistic magnetohydrodynamics simulations of neutron star spacetimes
topic Compact binary stars
Gravitational waves
General relativity
Magnetohydrodynamics
Magnetohydrodynamical simulations
Neutron stars
url https://doi.org/10.3847/1538-4365/ad87d4
work_keys_str_mv AT williamcook grathenageneralrelativisticmagnetohydrodynamicssimulationsofneutronstarspacetimes
AT borisdaszuta grathenageneralrelativisticmagnetohydrodynamicssimulationsofneutronstarspacetimes
AT jacobfields grathenageneralrelativisticmagnetohydrodynamicssimulationsofneutronstarspacetimes
AT peterhammond grathenageneralrelativisticmagnetohydrodynamicssimulationsofneutronstarspacetimes
AT simonealbanesi grathenageneralrelativisticmagnetohydrodynamicssimulationsofneutronstarspacetimes
AT francescozappa grathenageneralrelativisticmagnetohydrodynamicssimulationsofneutronstarspacetimes
AT sebastianobernuzzi grathenageneralrelativisticmagnetohydrodynamicssimulationsofneutronstarspacetimes
AT davidradice grathenageneralrelativisticmagnetohydrodynamicssimulationsofneutronstarspacetimes