Few-Shot SAR Target Recognition via Causal Inference and Deep Metric Learning
Deep learning, with large-scale annotated datasets, has demonstrated remarkable success in synthetic aperture radar automatic target recognition (SAR-ATR). However, the collecting of SAR images is expensive and complex, and manually labeling them requires expert knowledge. To overcome these limitati...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11080412/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Deep learning, with large-scale annotated datasets, has demonstrated remarkable success in synthetic aperture radar automatic target recognition (SAR-ATR). However, the collecting of SAR images is expensive and complex, and manually labeling them requires expert knowledge. To overcome these limitations, we propose a few-shot learning model capable of accurate recognition of novel targets with minimal training samples. Our model innovatively integrates causal inference with mutual centralized learning (MCL) to address few-shot SAR-ATR tasks. First, we establish a causal inference framework to identify and model the dependencies among target characteristics, imaging conditions, and category labels. This framework incorporates a novel causal intervention method based on multi-scale random convolution to eliminate spurious correlations caused by imaging variations, thereby enhancing feature stability. Second, we introduce an advanced MCL module to effectively evaluate feature similarity in few-shot settings. MCL breaks through the unidirectional matching paradigm adopted by conventional metric learning. Through its bidirectional feature interactions and dense feature accessibility mechanisms, MCL achieves more robust feature discrimination in few-shot learning tasks. Comprehensive experiments demonstrate that our model outperforms existing advanced few-shot SAR-ATR methods, achieving superior recognition accuracy while maintaining robustness in data-scarce scenarios. |
|---|---|
| ISSN: | 2169-3536 |