The Preparation of Soluble Cellouronic Acid Sodium Salt by 4-Acetamide-TEMPO Mediated Oxidation of Ultrasound-Pretreated Parenchyma Cellulose from Bagasse Pith

The parenchyma cellulose isolated from bagasse pith was used as an alternative resource for preparation of water-soluble cellouronic acid sodium salt (CAS). The influence of ultrasound treatment on the cellulose was investigated for obtaining CAS by regioselective oxidization using 4-acetamide-TEMPO...

Full description

Saved in:
Bibliographic Details
Main Authors: Xin GAO, Keli CHEN, Heng ZHANG, Lincai PENG
Format: Article
Language:English
Published: Institute of Fundamental Technological Research Polish Academy of Sciences 2014-06-01
Series:Archives of Acoustics
Subjects:
Online Access:https://acoustics.ippt.pan.pl/index.php/aa/article/view/280
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The parenchyma cellulose isolated from bagasse pith was used as an alternative resource for preparation of water-soluble cellouronic acid sodium salt (CAS). The influence of ultrasound treatment on the cellulose was investigated for obtaining CAS by regioselective oxidization using 4-acetamide-TEMPO and NaClO with NaClO$_2$ as a primary oxidant in an aqueous buffer at pH 6.0. The yield, carboxylate content and polymerization degree (DP) of CAS were measured as a function of ultrasonic power, agitating time and cellulose consistency by an orthogonal test. The ultrasound-treated conditions were further improved by discussion of ultrasonic power, the most important factor influencing the yield and DP. An optimized CAS yield of 72.9% with DP value (DPv) of 212 was found when the ultrasonic strength is 550 W, agitating time is 3 h and cellulose consistency is 2.0%. The oxidation reactivity of cellulose was improved by ultrasonic irradiation, whereas no significant changes in crystallinity of cellulose were measured after ultrasonic treatment. Moreover, the ultrasound treatment has a greater effect on yielding CAS from parenchyma cellulose than from bagasse fibrous’ one. The CAS was further characterized by Fourier transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM).
ISSN:0137-5075
2300-262X