Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise
This study evaluates the performance of a 32-marker motion capture (MoCap) system in estimating respiratory frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/8/2578 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849714185235070976 |
|---|---|
| author | Carlo Massaroni Andrea Nicolò Ana Luiza de Castro Lopes Chiara Romano Mariangela Pinnelli Karine Sarro Emiliano Schena Pietro Cerveri Massimo Sacchetti Sergio Silvestri Amanda Piaia Silvatti |
| author_facet | Carlo Massaroni Andrea Nicolò Ana Luiza de Castro Lopes Chiara Romano Mariangela Pinnelli Karine Sarro Emiliano Schena Pietro Cerveri Massimo Sacchetti Sergio Silvestri Amanda Piaia Silvatti |
| author_sort | Carlo Massaroni |
| collection | DOAJ |
| description | This study evaluates the performance of a 32-marker motion capture (MoCap) system in estimating respiratory frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>) and tidal volume (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>) during cycling exercise. Fourteen well-trained cyclists performed an incremental step test on a cycle ergometer, while simultaneously recording a raw flow signal with a reference metabolic cart (COSMED) and respiratory-induced torso movements with twelve optoelectronic cameras registering the position of 32 markers affixed to the torso. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> were calculated from both systems on a breath-by-breath basis. The MoCap system showed a strong correlation with the COSMED system when measuring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.99, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.87, respectively) during exercise. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>, the mean absolute error (MAE) and mean absolute percentage error (MAPE) were 0.79 breaths/min and 2.1%, respectively. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>, MoCap consistently underestimated values compared to COSMED, showing a bias (MOD ± LOA) of −0.11 ± 0.42 L and MAPE values of 8%. These findings highlight the system’s capabilities for real-time respiratory monitoring in athletic environments. |
| format | Article |
| id | doaj-art-d99ea6f5e6a54921b82cc02ba6540f1f |
| institution | DOAJ |
| issn | 1424-8220 |
| language | English |
| publishDate | 2025-04-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Sensors |
| spelling | doaj-art-d99ea6f5e6a54921b82cc02ba6540f1f2025-08-20T03:13:45ZengMDPI AGSensors1424-82202025-04-01258257810.3390/s25082578Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental ExerciseCarlo Massaroni0Andrea Nicolò1Ana Luiza de Castro Lopes2Chiara Romano3Mariangela Pinnelli4Karine Sarro5Emiliano Schena6Pietro Cerveri7Massimo Sacchetti8Sergio Silvestri9Amanda Piaia Silvatti10Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyDepartment of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, ItalyFaculdade de Educação Física, Universidade Estadual de Campinas, Campinas 13083-970, BrazilUnit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyUnit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyFaculdade de Educação Física, Universidade Estadual de Campinas, Campinas 13083-970, BrazilUnit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyDipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, ItalyDepartment of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, ItalyUnit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyDepartamento de Educação Física, Universidade Federal de Viçosa, Viçosa 36570-900, BrazilThis study evaluates the performance of a 32-marker motion capture (MoCap) system in estimating respiratory frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>) and tidal volume (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>) during cycling exercise. Fourteen well-trained cyclists performed an incremental step test on a cycle ergometer, while simultaneously recording a raw flow signal with a reference metabolic cart (COSMED) and respiratory-induced torso movements with twelve optoelectronic cameras registering the position of 32 markers affixed to the torso. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> were calculated from both systems on a breath-by-breath basis. The MoCap system showed a strong correlation with the COSMED system when measuring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.99, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.87, respectively) during exercise. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>, the mean absolute error (MAE) and mean absolute percentage error (MAPE) were 0.79 breaths/min and 2.1%, respectively. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>, MoCap consistently underestimated values compared to COSMED, showing a bias (MOD ± LOA) of −0.11 ± 0.42 L and MAPE values of 8%. These findings highlight the system’s capabilities for real-time respiratory monitoring in athletic environments.https://www.mdpi.com/1424-8220/25/8/2578measurementsbreathing biomechanicsmotion capture systemsincremental exercisebreathing monitoringvalidity |
| spellingShingle | Carlo Massaroni Andrea Nicolò Ana Luiza de Castro Lopes Chiara Romano Mariangela Pinnelli Karine Sarro Emiliano Schena Pietro Cerveri Massimo Sacchetti Sergio Silvestri Amanda Piaia Silvatti Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise Sensors measurements breathing biomechanics motion capture systems incremental exercise breathing monitoring validity |
| title | Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise |
| title_full | Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise |
| title_fullStr | Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise |
| title_full_unstemmed | Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise |
| title_short | Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise |
| title_sort | breath by breath measurement of respiratory frequency and tidal volume with a multiple camera motion capture system during cycling incremental exercise |
| topic | measurements breathing biomechanics motion capture systems incremental exercise breathing monitoring validity |
| url | https://www.mdpi.com/1424-8220/25/8/2578 |
| work_keys_str_mv | AT carlomassaroni breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT andreanicolo breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT analuizadecastrolopes breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT chiararomano breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT mariangelapinnelli breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT karinesarro breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT emilianoschena breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT pietrocerveri breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT massimosacchetti breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT sergiosilvestri breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise AT amandapiaiasilvatti breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise |