Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise

This study evaluates the performance of a 32-marker motion capture (MoCap) system in estimating respiratory frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</...

Full description

Saved in:
Bibliographic Details
Main Authors: Carlo Massaroni, Andrea Nicolò, Ana Luiza de Castro Lopes, Chiara Romano, Mariangela Pinnelli, Karine Sarro, Emiliano Schena, Pietro Cerveri, Massimo Sacchetti, Sergio Silvestri, Amanda Piaia Silvatti
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/8/2578
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849714185235070976
author Carlo Massaroni
Andrea Nicolò
Ana Luiza de Castro Lopes
Chiara Romano
Mariangela Pinnelli
Karine Sarro
Emiliano Schena
Pietro Cerveri
Massimo Sacchetti
Sergio Silvestri
Amanda Piaia Silvatti
author_facet Carlo Massaroni
Andrea Nicolò
Ana Luiza de Castro Lopes
Chiara Romano
Mariangela Pinnelli
Karine Sarro
Emiliano Schena
Pietro Cerveri
Massimo Sacchetti
Sergio Silvestri
Amanda Piaia Silvatti
author_sort Carlo Massaroni
collection DOAJ
description This study evaluates the performance of a 32-marker motion capture (MoCap) system in estimating respiratory frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>) and tidal volume (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>) during cycling exercise. Fourteen well-trained cyclists performed an incremental step test on a cycle ergometer, while simultaneously recording a raw flow signal with a reference metabolic cart (COSMED) and respiratory-induced torso movements with twelve optoelectronic cameras registering the position of 32 markers affixed to the torso. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> were calculated from both systems on a breath-by-breath basis. The MoCap system showed a strong correlation with the COSMED system when measuring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.99, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.87, respectively) during exercise. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>, the mean absolute error (MAE) and mean absolute percentage error (MAPE) were 0.79 breaths/min and 2.1%, respectively. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>, MoCap consistently underestimated values compared to COSMED, showing a bias (MOD ± LOA) of −0.11 ± 0.42 L and MAPE values of 8%. These findings highlight the system’s capabilities for real-time respiratory monitoring in athletic environments.
format Article
id doaj-art-d99ea6f5e6a54921b82cc02ba6540f1f
institution DOAJ
issn 1424-8220
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj-art-d99ea6f5e6a54921b82cc02ba6540f1f2025-08-20T03:13:45ZengMDPI AGSensors1424-82202025-04-01258257810.3390/s25082578Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental ExerciseCarlo Massaroni0Andrea Nicolò1Ana Luiza de Castro Lopes2Chiara Romano3Mariangela Pinnelli4Karine Sarro5Emiliano Schena6Pietro Cerveri7Massimo Sacchetti8Sergio Silvestri9Amanda Piaia Silvatti10Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyDepartment of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, ItalyFaculdade de Educação Física, Universidade Estadual de Campinas, Campinas 13083-970, BrazilUnit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyUnit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyFaculdade de Educação Física, Universidade Estadual de Campinas, Campinas 13083-970, BrazilUnit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyDipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, ItalyDepartment of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, ItalyUnit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, ItalyDepartamento de Educação Física, Universidade Federal de Viçosa, Viçosa 36570-900, BrazilThis study evaluates the performance of a 32-marker motion capture (MoCap) system in estimating respiratory frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>) and tidal volume (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>) during cycling exercise. Fourteen well-trained cyclists performed an incremental step test on a cycle ergometer, while simultaneously recording a raw flow signal with a reference metabolic cart (COSMED) and respiratory-induced torso movements with twelve optoelectronic cameras registering the position of 32 markers affixed to the torso. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> were calculated from both systems on a breath-by-breath basis. The MoCap system showed a strong correlation with the COSMED system when measuring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.99, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.87, respectively) during exercise. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>, the mean absolute error (MAE) and mean absolute percentage error (MAPE) were 0.79 breaths/min and 2.1%, respectively. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>, MoCap consistently underestimated values compared to COSMED, showing a bias (MOD ± LOA) of −0.11 ± 0.42 L and MAPE values of 8%. These findings highlight the system’s capabilities for real-time respiratory monitoring in athletic environments.https://www.mdpi.com/1424-8220/25/8/2578measurementsbreathing biomechanicsmotion capture systemsincremental exercisebreathing monitoringvalidity
spellingShingle Carlo Massaroni
Andrea Nicolò
Ana Luiza de Castro Lopes
Chiara Romano
Mariangela Pinnelli
Karine Sarro
Emiliano Schena
Pietro Cerveri
Massimo Sacchetti
Sergio Silvestri
Amanda Piaia Silvatti
Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise
Sensors
measurements
breathing biomechanics
motion capture systems
incremental exercise
breathing monitoring
validity
title Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise
title_full Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise
title_fullStr Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise
title_full_unstemmed Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise
title_short Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise
title_sort breath by breath measurement of respiratory frequency and tidal volume with a multiple camera motion capture system during cycling incremental exercise
topic measurements
breathing biomechanics
motion capture systems
incremental exercise
breathing monitoring
validity
url https://www.mdpi.com/1424-8220/25/8/2578
work_keys_str_mv AT carlomassaroni breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT andreanicolo breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT analuizadecastrolopes breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT chiararomano breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT mariangelapinnelli breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT karinesarro breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT emilianoschena breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT pietrocerveri breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT massimosacchetti breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT sergiosilvestri breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise
AT amandapiaiasilvatti breathbybreathmeasurementofrespiratoryfrequencyandtidalvolumewithamultiplecameramotioncapturesystemduringcyclingincrementalexercise