Breath-by-Breath Measurement of Respiratory Frequency and Tidal Volume with a Multiple-Camera Motion Capture System During Cycling Incremental Exercise

This study evaluates the performance of a 32-marker motion capture (MoCap) system in estimating respiratory frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</...

Full description

Saved in:
Bibliographic Details
Main Authors: Carlo Massaroni, Andrea Nicolò, Ana Luiza de Castro Lopes, Chiara Romano, Mariangela Pinnelli, Karine Sarro, Emiliano Schena, Pietro Cerveri, Massimo Sacchetti, Sergio Silvestri, Amanda Piaia Silvatti
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/8/2578
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study evaluates the performance of a 32-marker motion capture (MoCap) system in estimating respiratory frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>) and tidal volume (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>) during cycling exercise. Fourteen well-trained cyclists performed an incremental step test on a cycle ergometer, while simultaneously recording a raw flow signal with a reference metabolic cart (COSMED) and respiratory-induced torso movements with twelve optoelectronic cameras registering the position of 32 markers affixed to the torso. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> were calculated from both systems on a breath-by-breath basis. The MoCap system showed a strong correlation with the COSMED system when measuring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.99, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>r</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.87, respectively) during exercise. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>f</mi><mi>R</mi></msub></semantics></math></inline-formula>, the mean absolute error (MAE) and mean absolute percentage error (MAPE) were 0.79 breaths/min and 2.1%, respectively. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>V</mi><mi>T</mi></msub></semantics></math></inline-formula>, MoCap consistently underestimated values compared to COSMED, showing a bias (MOD ± LOA) of −0.11 ± 0.42 L and MAPE values of 8%. These findings highlight the system’s capabilities for real-time respiratory monitoring in athletic environments.
ISSN:1424-8220