Controllability for a Wave Equation with Moving Boundary
We investigate the controllability for a one-dimensional wave equation in domains with moving boundary. This model characterizes small vibrations of a stretched elastic string when one of the two endpoints varies. When the speed of the moving endpoint is less than 1-1/e, by Hilbert uniqueness method...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2014/827698 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We investigate the controllability for a one-dimensional wave equation in domains with moving boundary. This model characterizes small vibrations of a stretched elastic string when one of the two endpoints varies. When the speed of the moving endpoint is less than 1-1/e, by Hilbert uniqueness method, sidewise energy estimates method, and multiplier method, we get partial Dirichlet boundary controllability. Moreover, we will give a sharper estimate on controllability time that only depends on the speed of the moving endpoint. |
|---|---|
| ISSN: | 1110-757X 1687-0042 |