Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologies

IntroductionThe rapid evolution of Artificial Intelligence (AI) necessitates robust ethical frameworks to ensure responsible project deployment. This study addresses the challenge of quantifying ethical criteria in AI projects amidst contesting communicative practices, organizational structures, and...

Full description

Saved in:
Bibliographic Details
Main Authors: Sandeep Wankhade, Manoj Sahni, Ernesto León-Castro, Maricruz Olazabal-Lugo
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-04-01
Series:Frontiers in Artificial Intelligence
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/frai.2025.1535845/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849723978330931200
author Sandeep Wankhade
Manoj Sahni
Ernesto León-Castro
Maricruz Olazabal-Lugo
author_facet Sandeep Wankhade
Manoj Sahni
Ernesto León-Castro
Maricruz Olazabal-Lugo
author_sort Sandeep Wankhade
collection DOAJ
description IntroductionThe rapid evolution of Artificial Intelligence (AI) necessitates robust ethical frameworks to ensure responsible project deployment. This study addresses the challenge of quantifying ethical criteria in AI projects amidst contesting communicative practices, organizational structures, and enabling technologies, which shape AI’s societal implications.MethodsWe propose a novel framework integrating Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to evaluate AI project performance and model ethical uncertainties using Fuzzy logic. A Fuzzy weighted average approach quantifies critical ethical dimensions: transparency, fairness, accountability, privacy, security, explainability, human involvement, and societal impact.ResultsThe framework enables a structured assessment of AI projects, enhancing transparency and accountability by mapping ethical criteria to project outcomes. ANN evaluates performance metrics, while ANFIS models uncertainties, providing a comprehensive ethical evaluation under complex conditions.DiscussionBy combining ANN and ANFIS, this study advances the understanding of AI’s ethical dimensions, offering a scalable approach for accountable AI systems. It reframes organizational communication and decision-making, embedding ethics within AI’s technological and structural contexts. This work contributes to responsible AI innovation, fostering trust and societal alignment in AI deployments.
format Article
id doaj-art-d971d45540ca4ff191d0f1d08610ce26
institution DOAJ
issn 2624-8212
language English
publishDate 2025-04-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Artificial Intelligence
spelling doaj-art-d971d45540ca4ff191d0f1d08610ce262025-08-20T03:10:53ZengFrontiers Media S.A.Frontiers in Artificial Intelligence2624-82122025-04-01810.3389/frai.2025.15358451535845Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologiesSandeep Wankhade0Manoj Sahni1Ernesto León-Castro2Maricruz Olazabal-Lugo3Department of Mathematics, Pandit Deendayal Energy University, Gandhinagar, IndiaDepartment of Mathematics, Pandit Deendayal Energy University, Gandhinagar, IndiaFaculty of Economics and Administrative Sciences, Universidad Católica de la Santísima Concepción, Concepción, ChileUnidad Regional Culiacán, Universidad Autónoma de Occidente, Culiacán, MexicoIntroductionThe rapid evolution of Artificial Intelligence (AI) necessitates robust ethical frameworks to ensure responsible project deployment. This study addresses the challenge of quantifying ethical criteria in AI projects amidst contesting communicative practices, organizational structures, and enabling technologies, which shape AI’s societal implications.MethodsWe propose a novel framework integrating Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to evaluate AI project performance and model ethical uncertainties using Fuzzy logic. A Fuzzy weighted average approach quantifies critical ethical dimensions: transparency, fairness, accountability, privacy, security, explainability, human involvement, and societal impact.ResultsThe framework enables a structured assessment of AI projects, enhancing transparency and accountability by mapping ethical criteria to project outcomes. ANN evaluates performance metrics, while ANFIS models uncertainties, providing a comprehensive ethical evaluation under complex conditions.DiscussionBy combining ANN and ANFIS, this study advances the understanding of AI’s ethical dimensions, offering a scalable approach for accountable AI systems. It reframes organizational communication and decision-making, embedding ethics within AI’s technological and structural contexts. This work contributes to responsible AI innovation, fostering trust and societal alignment in AI deployments.https://www.frontiersin.org/articles/10.3389/frai.2025.1535845/fullartificial intelligence (AI)artificial neural networks (ANN)adaptive neuro-fuzzy inference systems (ANFIS)accountabilityorganizational structures
spellingShingle Sandeep Wankhade
Manoj Sahni
Ernesto León-Castro
Maricruz Olazabal-Lugo
Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologies
Frontiers in Artificial Intelligence
artificial intelligence (AI)
artificial neural networks (ANN)
adaptive neuro-fuzzy inference systems (ANFIS)
accountability
organizational structures
title Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologies
title_full Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologies
title_fullStr Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologies
title_full_unstemmed Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologies
title_short Navigating AI ethics: ANN and ANFIS for transparent and accountable project evaluation amidst contesting AI practices and technologies
title_sort navigating ai ethics ann and anfis for transparent and accountable project evaluation amidst contesting ai practices and technologies
topic artificial intelligence (AI)
artificial neural networks (ANN)
adaptive neuro-fuzzy inference systems (ANFIS)
accountability
organizational structures
url https://www.frontiersin.org/articles/10.3389/frai.2025.1535845/full
work_keys_str_mv AT sandeepwankhade navigatingaiethicsannandanfisfortransparentandaccountableprojectevaluationamidstcontestingaipracticesandtechnologies
AT manojsahni navigatingaiethicsannandanfisfortransparentandaccountableprojectevaluationamidstcontestingaipracticesandtechnologies
AT ernestoleoncastro navigatingaiethicsannandanfisfortransparentandaccountableprojectevaluationamidstcontestingaipracticesandtechnologies
AT maricruzolazaballugo navigatingaiethicsannandanfisfortransparentandaccountableprojectevaluationamidstcontestingaipracticesandtechnologies