Assessing the Air Humidity Characteristics of Local Climate Zones in Guangzhou, China

An urban canopy’s humidity significantly affects thermal comfort, public health, and building energy efficiency; however, it remains insufficiently understood. This study employed 3-year (2020–2022) fixed measurements from Guangzhou to investigate the temporal patterns of relative humidity (RH), vap...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiao Tan, Qi Zhang, Yiqi Chen, Junsong Wang, Lihua Zhao, Guang Chen
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/1/95
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An urban canopy’s humidity significantly affects thermal comfort, public health, and building energy efficiency; however, it remains insufficiently understood. This study employed 3-year (2020–2022) fixed measurements from Guangzhou to investigate the temporal patterns of relative humidity (RH), vapor pressure (Ea), and vapor pressure deficit (VPD) across eight local climatic zones (LCZs). Clear and distinct patterns in the humidity characteristics among the LCZs were revealed on multiple timescales. The <i>RH</i> and <i>VPD</i> of each zone were higher in summer than in winter, with peak RH observed in LCZ A (83.45%) and peak <i>VPD</i> in LCZ 3 (13.6 hPa). Furthermore, a significant daytime urban dry island (UDI) effect in the summer and a nighttime urban moisture island (UMI) effect in the winter were observed in terms of the Ea difference between urban and rural areas. The strongest UMI occurred during winter nights in LCZ 8, with a peak intensity of 0.8 hPa, while the UDI was more frequent during summer days in LCZ 1, with a maximum value of −1.2 hPa; meanwhile, compact areas had a slightly higher frequency of UDI than open areas. Finally, the effects of the urban heat island (UHI) and wind speed (<i>V</i>) on UMI were analyzed. During the daytime, a weak correlation was observed between the UHI and UMI. Wind enhanced the intensity of the nighttime UMI. This research offers further insights into the canopy humidity characteristics in low-latitude subtropical cities, thereby contributing to the establishment of a universal model to quantify the differences in moisture between urban and rural areas.
ISSN:2075-5309