A Gain Scheduling Approach of Delayed Control with Application to Aircraft Wing in Wind Tunnel

The objective of this work is to study the equilibrium stability of a switched linear model with time-delayed control and additive disturbances, that in subsidiary represents the control of wing vibrations in the presence of the turbulence disturbances in an aerodynamic tunnel. The state system is m...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniela Enciu, Adrian Toader, Ioan Ursu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/10/1614
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this work is to study the equilibrium stability of a switched linear model with time-delayed control and additive disturbances, that in subsidiary represents the control of wing vibrations in the presence of the turbulence disturbances in an aerodynamic tunnel. The state system is modeled as a collection of subsystems, each corresponding to different levels of air velocity in the wind tunnel. The problem is closely related to the gain scheduling approach for stable control synthesis and to the design of stable, switched systems with time-delay control. A state-predictive feedback method is employed to compensate for actuator delay, resulting in closed-loop free delay switching systems both in presence and absence of disturbances. The main contribution of this study is a thorough analysis of system stability in the presence of disturbances. Finally, numerical simulation results are provided to support and complement the findings.
ISSN:2227-7390