Extended Laguerre Polynomials Associated with Hermite, Bernoulli, and Euler Numbers and Polynomials
Let Pn={p(x)∈ℝ[x]∣deg p(x)≤n} be an inner product space with the inner product 〈p(x),q(x)〉=∫0∞xαe-xp(x)q(x)dx, where p(x),q(x)∈Pn and α∈ℝ with α>-1. In this paper we study the properties of the extended Laguerre polynomials which are an orthogonal basis for Pn. From those properties, we derive s...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2012/957350 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Let Pn={p(x)∈ℝ[x]∣deg p(x)≤n} be an inner product space with the inner product 〈p(x),q(x)〉=∫0∞xαe-xp(x)q(x)dx, where p(x),q(x)∈Pn and α∈ℝ with α>-1. In this paper we study the properties of the extended Laguerre polynomials which are an orthogonal basis for Pn. From those properties, we derive some interesting relations and identities of the extended Laguerre polynomials associated with Hermite, Bernoulli, and Euler numbers and polynomials. |
|---|---|
| ISSN: | 1085-3375 1687-0409 |