Estimation Model for Cotton Canopy Structure Parameters Based on Spectral Vegetation Index

The spectral vegetation indices derived from remote sensing data provide a detailed spectral analysis for assessing vegetation characteristics. This study investigated the relationship between cotton yield and canopy spectral indices to develop yield estimation models. Spectral reflectance data were...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaqin Qi, Xi Chen, Zhengchao Chen, Xin Zhang, Congju Shen, Yan Chen, Yuanying Peng, Bing Chen, Qiong Wang, Taijie Liu, Hao Zhang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Life
Subjects:
Online Access:https://www.mdpi.com/2075-1729/15/1/62
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588164453105664
author Yaqin Qi
Xi Chen
Zhengchao Chen
Xin Zhang
Congju Shen
Yan Chen
Yuanying Peng
Bing Chen
Qiong Wang
Taijie Liu
Hao Zhang
author_facet Yaqin Qi
Xi Chen
Zhengchao Chen
Xin Zhang
Congju Shen
Yan Chen
Yuanying Peng
Bing Chen
Qiong Wang
Taijie Liu
Hao Zhang
author_sort Yaqin Qi
collection DOAJ
description The spectral vegetation indices derived from remote sensing data provide a detailed spectral analysis for assessing vegetation characteristics. This study investigated the relationship between cotton yield and canopy spectral indices to develop yield estimation models. Spectral reflectance data were collected at various growth stages using an ASD FieldSpec Pro VNIR 2500 spectrometer. Six prediction models were developed using spectral vegetation indices, including the Normalized Difference Vegetation Index (<i>NDVI</i>) and Ratio Vegetation Index (<i>RVI</i>), to estimate the Leaf Area Index (<i>LAI</i>) and above-ground biomass. For <i>LAI</i> estimation using the <i>NDVI</i>, the power function model (<i>y = 10.083x<sup>11.298</sup></i>) demonstrated higher precision, with a multiple correlation coefficient of <i>R</i><sup>2</sup> = 0.8184 and the smallest root mean square error (<i>RMSE</i> = 0.3613). These results confirm the strong predictive capacity of <i>NDVI</i> for <i>LAI</i>, with the power function model offering the best estimation accuracy. In estimating above-ground biomass using <i>RVI</i>, the power function model of <i>y = 6.5218x<sup>1.33917</sup></i> achieved the higher correlation (<i>R</i><sup>2</sup> = 0.8851) for fresh biomass with an <i>RMSE</i> of 0.1033, making it the most accurate. For dry biomass, the exponential function model (<i>y = 9.1565 × 10<sup>−5</sup>∙exp(1.1146x)</i>) was the most precise, achieving an <i>R</i><sup>2</sup> value of 0.8456 and the lowest <i>RMSE</i> value of 0.0076. These findings highlight the potential of spectral remote sensing for accurately predicting cotton canopy structural parameters and biomass weights. By integrating spectral analysis techniques with remote sensing, this research offers valuable insights for precision cotton planting and field management, enabling optimized agricultural practices and enhanced vegetation health monitoring.
format Article
id doaj-art-d90c8d701b454124a22118a5d0006d88
institution Kabale University
issn 2075-1729
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Life
spelling doaj-art-d90c8d701b454124a22118a5d0006d882025-01-24T13:38:37ZengMDPI AGLife2075-17292025-01-011516210.3390/life15010062Estimation Model for Cotton Canopy Structure Parameters Based on Spectral Vegetation IndexYaqin Qi0Xi Chen1Zhengchao Chen2Xin Zhang3Congju Shen4Yan Chen5Yuanying Peng6Bing Chen7Qiong Wang8Taijie Liu9Hao Zhang10Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaResearch Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, ChinaResearch Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, ChinaThe Oasis Key Laboratory of Ecological Agriculture of Xinjiang, Shihezi University, Shihezi 832003, ChinaCollege of Arts and Sciences, Lewis University, Romeoville, IL 60446, USAResearch Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, ChinaResearch Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, ChinaResearch Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaThe spectral vegetation indices derived from remote sensing data provide a detailed spectral analysis for assessing vegetation characteristics. This study investigated the relationship between cotton yield and canopy spectral indices to develop yield estimation models. Spectral reflectance data were collected at various growth stages using an ASD FieldSpec Pro VNIR 2500 spectrometer. Six prediction models were developed using spectral vegetation indices, including the Normalized Difference Vegetation Index (<i>NDVI</i>) and Ratio Vegetation Index (<i>RVI</i>), to estimate the Leaf Area Index (<i>LAI</i>) and above-ground biomass. For <i>LAI</i> estimation using the <i>NDVI</i>, the power function model (<i>y = 10.083x<sup>11.298</sup></i>) demonstrated higher precision, with a multiple correlation coefficient of <i>R</i><sup>2</sup> = 0.8184 and the smallest root mean square error (<i>RMSE</i> = 0.3613). These results confirm the strong predictive capacity of <i>NDVI</i> for <i>LAI</i>, with the power function model offering the best estimation accuracy. In estimating above-ground biomass using <i>RVI</i>, the power function model of <i>y = 6.5218x<sup>1.33917</sup></i> achieved the higher correlation (<i>R</i><sup>2</sup> = 0.8851) for fresh biomass with an <i>RMSE</i> of 0.1033, making it the most accurate. For dry biomass, the exponential function model (<i>y = 9.1565 × 10<sup>−5</sup>∙exp(1.1146x)</i>) was the most precise, achieving an <i>R</i><sup>2</sup> value of 0.8456 and the lowest <i>RMSE</i> value of 0.0076. These findings highlight the potential of spectral remote sensing for accurately predicting cotton canopy structural parameters and biomass weights. By integrating spectral analysis techniques with remote sensing, this research offers valuable insights for precision cotton planting and field management, enabling optimized agricultural practices and enhanced vegetation health monitoring.https://www.mdpi.com/2075-1729/15/1/62spectral vegetation indexcotton canopy informationestimation model
spellingShingle Yaqin Qi
Xi Chen
Zhengchao Chen
Xin Zhang
Congju Shen
Yan Chen
Yuanying Peng
Bing Chen
Qiong Wang
Taijie Liu
Hao Zhang
Estimation Model for Cotton Canopy Structure Parameters Based on Spectral Vegetation Index
Life
spectral vegetation index
cotton canopy information
estimation model
title Estimation Model for Cotton Canopy Structure Parameters Based on Spectral Vegetation Index
title_full Estimation Model for Cotton Canopy Structure Parameters Based on Spectral Vegetation Index
title_fullStr Estimation Model for Cotton Canopy Structure Parameters Based on Spectral Vegetation Index
title_full_unstemmed Estimation Model for Cotton Canopy Structure Parameters Based on Spectral Vegetation Index
title_short Estimation Model for Cotton Canopy Structure Parameters Based on Spectral Vegetation Index
title_sort estimation model for cotton canopy structure parameters based on spectral vegetation index
topic spectral vegetation index
cotton canopy information
estimation model
url https://www.mdpi.com/2075-1729/15/1/62
work_keys_str_mv AT yaqinqi estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT xichen estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT zhengchaochen estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT xinzhang estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT congjushen estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT yanchen estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT yuanyingpeng estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT bingchen estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT qiongwang estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT taijieliu estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex
AT haozhang estimationmodelforcottoncanopystructureparametersbasedonspectralvegetationindex