Design of a Miniaturized and Polarization-Independent Frequency-Selective Surface for Targeted EMI Shielding
In this article, a miniaturized frequency-selective surface (FSS)-based electromagnetic shield is investigated for EMI mitigation in the X-band. The FSS comprises a convoluted conducting loop designed over an FR-4 substrate. It operates at 10 GHz X-band frequency and offers an effective shielding of...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/8/4534 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this article, a miniaturized frequency-selective surface (FSS)-based electromagnetic shield is investigated for EMI mitigation in the X-band. The FSS comprises a convoluted conducting loop designed over an FR-4 substrate. It operates at 10 GHz X-band frequency and offers an effective shielding of at least 33 dB. It reveals rejection bandwidths of 26% for the TE and TM wave modes at normal incidence. Moreover, it accomplishes polarization-insensitive and angularly stable spectral responses owing to its structural symmetry and compact size. In addition, an equivalent circuit model (ECM) and a finite prototype of the shield are developed to verify EM simulations. A comparison of the results indicates that the FSS offers wide angular stability and excellent shielding performance, which makes it a suitable candidate for applications requiring targeted EMI mitigation. |
|---|---|
| ISSN: | 2076-3417 |