Fermionic CFTs from topological boundaries in abelian Chern-Simons theories

Abstract A quantum field theory is referred to as bosonic (non-spin) if its physical quantities are independent of the spacetime spin structure, and as fermionic (spin) if they depend on it. We explore fermionic conformal field theories (CFTs) that emerge from bosonic abelian Chern-Simons theories,...

Full description

Saved in:
Bibliographic Details
Main Authors: Kohki Kawabata, Tatsuma Nishioka, Takuya Okuda, Shinichiro Yahagi
Format: Article
Language:English
Published: SpringerOpen 2025-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP05(2025)105
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract A quantum field theory is referred to as bosonic (non-spin) if its physical quantities are independent of the spacetime spin structure, and as fermionic (spin) if they depend on it. We explore fermionic conformal field theories (CFTs) that emerge from bosonic abelian Chern-Simons theories, playing the role of a symmetry topological field theory, by imposing topological boundary conditions. Our construction includes the fermionic generalization of code CFTs. When the Chern-Simons theory is associated with the root lattice of a simply laced Lie algebra, this approach yields a fermionic CFT with a level-one affine Lie algebra symmetry. As an application, we consider the Chern-Simons theories corresponding to a class of supersymmetric vertex operator algebras studied by Johnson-Freyd and classify their fermionic topological boundary conditions that give rise to supersymmetric CFTs.
ISSN:1029-8479