Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland
<p>Restoration of drained and extracted peatlands can potentially return them to carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) sinks, thus acting as significant climate change mitigation. However, whether the restored sites will remain si...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Copernicus Publications
2025-03-01
|
| Series: | Biogeosciences |
| Online Access: | https://bg.copernicus.org/articles/22/1355/2025/bg-22-1355-2025.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850069070080114688 |
|---|---|
| author | H. He I. B. Strachan N. T. Roulet |
| author_facet | H. He I. B. Strachan N. T. Roulet |
| author_sort | H. He |
| collection | DOAJ |
| description | <p>Restoration of drained and extracted peatlands can potentially return them to carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) sinks, thus acting as significant climate change mitigation. However, whether the restored sites will remain sinks or switch to sources with a changing climate is unknown. Therefore, we adapted the CoupModel to simulate ecosystem <span class="inline-formula">CO<sub>2</sub></span> fluxes and the associated influencing factors of a restored bog. The study site was a peatland in eastern Canada that was extracted for 8 years and left for 20 years before restoration. The model outputs were first evaluated against 3 years (representing 14–16 years post-restoration) of eddy covariance measurements of net ecosystem exchange (NEE), surface energy fluxes, soil temperature profiles, and water table depth data. A sensitivity analysis was conducted to evaluate the response of the simulated <span class="inline-formula">CO<sub>2</sub></span> fluxes to the thickness of the newly grown mosses. The validated model was then used to assess the sensitivity to changes in climate forcing. The CoupModel reproduced the measured surface energy fluxes and showed high agreement with the observed soil temperature, water table depth, and NEE data. The simulated NEE varied slightly when changing the thickness of newly grown mosses and acrotelm from 0.2 to 0.4 m but showed significantly less uptake for a 1 m thickness. The simulated NEE was <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">95</mn><mo>±</mo><mn mathvariant="normal">19</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="104pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="87eede722685d851a9097df4f18c8042"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00001.svg" width="104pt" height="15pt" src="bg-22-1355-2025-ie00001.png"/></svg:svg></span></span> over the 3 evaluation years and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">101</mn><mo>±</mo><mn mathvariant="normal">64</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="110pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c026dd05a905dd2d7a95dfa3d48e09f0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00002.svg" width="110pt" height="15pt" src="bg-22-1355-2025-ie00002.png"/></svg:svg></span></span>, ranging from <span class="inline-formula">−219</span> to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">54</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5e8fd221120e057e7dcae48f5531e4b2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00003.svg" width="80pt" height="15pt" src="bg-22-1355-2025-ie00003.png"/></svg:svg></span></span>, with extended 28-year climate data. After 14 years of restoration, the peatland has a mean <span class="inline-formula">CO<sub>2</sub></span> uptake rate similar to pristine sites but with a much larger interannual variability, and in dry years, the restored peatland can switch back to a temporary <span class="inline-formula">CO<sub>2</sub></span> source. The model predicts a moderate reduction in <span class="inline-formula">CO<sub>2</sub></span> uptake but still a reasonable sink under future climate change conditions if the peatland is ecologically and hydrologically restored. The ability of the CoupModel to simulate the <span class="inline-formula">CO<sub>2</sub></span> dynamics and its thermo-hydro-drivers for restored peatlands has important implications for emission accounting and climate-smart management of drained peatlands.</p> |
| format | Article |
| id | doaj-art-d86f0b9cc7eb40ffb137c1ed6acaeb53 |
| institution | DOAJ |
| issn | 1726-4170 1726-4189 |
| language | English |
| publishDate | 2025-03-01 |
| publisher | Copernicus Publications |
| record_format | Article |
| series | Biogeosciences |
| spelling | doaj-art-d86f0b9cc7eb40ffb137c1ed6acaeb532025-08-20T02:47:52ZengCopernicus PublicationsBiogeosciences1726-41701726-41892025-03-01221355136810.5194/bg-22-1355-2025Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatlandH. He0I. B. Strachan1N. T. Roulet2Department of Geography, McGill University, Montréal, Quebec, CanadaDepartment of Geography and Planning, Queen's University, Kingston, Ontario, CanadaDepartment of Geography, McGill University, Montréal, Quebec, Canada<p>Restoration of drained and extracted peatlands can potentially return them to carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) sinks, thus acting as significant climate change mitigation. However, whether the restored sites will remain sinks or switch to sources with a changing climate is unknown. Therefore, we adapted the CoupModel to simulate ecosystem <span class="inline-formula">CO<sub>2</sub></span> fluxes and the associated influencing factors of a restored bog. The study site was a peatland in eastern Canada that was extracted for 8 years and left for 20 years before restoration. The model outputs were first evaluated against 3 years (representing 14–16 years post-restoration) of eddy covariance measurements of net ecosystem exchange (NEE), surface energy fluxes, soil temperature profiles, and water table depth data. A sensitivity analysis was conducted to evaluate the response of the simulated <span class="inline-formula">CO<sub>2</sub></span> fluxes to the thickness of the newly grown mosses. The validated model was then used to assess the sensitivity to changes in climate forcing. The CoupModel reproduced the measured surface energy fluxes and showed high agreement with the observed soil temperature, water table depth, and NEE data. The simulated NEE varied slightly when changing the thickness of newly grown mosses and acrotelm from 0.2 to 0.4 m but showed significantly less uptake for a 1 m thickness. The simulated NEE was <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">95</mn><mo>±</mo><mn mathvariant="normal">19</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="104pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="87eede722685d851a9097df4f18c8042"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00001.svg" width="104pt" height="15pt" src="bg-22-1355-2025-ie00001.png"/></svg:svg></span></span> over the 3 evaluation years and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">101</mn><mo>±</mo><mn mathvariant="normal">64</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="110pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c026dd05a905dd2d7a95dfa3d48e09f0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00002.svg" width="110pt" height="15pt" src="bg-22-1355-2025-ie00002.png"/></svg:svg></span></span>, ranging from <span class="inline-formula">−219</span> to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">54</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5e8fd221120e057e7dcae48f5531e4b2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00003.svg" width="80pt" height="15pt" src="bg-22-1355-2025-ie00003.png"/></svg:svg></span></span>, with extended 28-year climate data. After 14 years of restoration, the peatland has a mean <span class="inline-formula">CO<sub>2</sub></span> uptake rate similar to pristine sites but with a much larger interannual variability, and in dry years, the restored peatland can switch back to a temporary <span class="inline-formula">CO<sub>2</sub></span> source. The model predicts a moderate reduction in <span class="inline-formula">CO<sub>2</sub></span> uptake but still a reasonable sink under future climate change conditions if the peatland is ecologically and hydrologically restored. The ability of the CoupModel to simulate the <span class="inline-formula">CO<sub>2</sub></span> dynamics and its thermo-hydro-drivers for restored peatlands has important implications for emission accounting and climate-smart management of drained peatlands.</p>https://bg.copernicus.org/articles/22/1355/2025/bg-22-1355-2025.pdf |
| spellingShingle | H. He I. B. Strachan N. T. Roulet Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland Biogeosciences |
| title | Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland |
| title_full | Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland |
| title_fullStr | Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland |
| title_full_unstemmed | Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland |
| title_short | Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland |
| title_sort | simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland |
| url | https://bg.copernicus.org/articles/22/1355/2025/bg-22-1355-2025.pdf |
| work_keys_str_mv | AT hhe simulatingecosystemcarbondioxidefluxesandtheirassociatedinfluencingfactorsforarestoredpeatland AT ibstrachan simulatingecosystemcarbondioxidefluxesandtheirassociatedinfluencingfactorsforarestoredpeatland AT ntroulet simulatingecosystemcarbondioxidefluxesandtheirassociatedinfluencingfactorsforarestoredpeatland |