Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland

<p>Restoration of drained and extracted peatlands can potentially return them to carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) sinks, thus acting as significant climate change mitigation. However, whether the restored sites will remain si...

Full description

Saved in:
Bibliographic Details
Main Authors: H. He, I. B. Strachan, N. T. Roulet
Format: Article
Language:English
Published: Copernicus Publications 2025-03-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/22/1355/2025/bg-22-1355-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850069070080114688
author H. He
I. B. Strachan
N. T. Roulet
author_facet H. He
I. B. Strachan
N. T. Roulet
author_sort H. He
collection DOAJ
description <p>Restoration of drained and extracted peatlands can potentially return them to carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) sinks, thus acting as significant climate change mitigation. However, whether the restored sites will remain sinks or switch to sources with a changing climate is unknown. Therefore, we adapted the CoupModel to simulate ecosystem <span class="inline-formula">CO<sub>2</sub></span> fluxes and the associated influencing factors of a restored bog. The study site was a peatland in eastern Canada that was extracted for 8 years and left for 20 years before restoration. The model outputs were first evaluated against 3 years (representing 14–16 years post-restoration) of eddy covariance measurements of net ecosystem exchange (NEE), surface energy fluxes, soil temperature profiles, and water table depth data. A sensitivity analysis was conducted to evaluate the response of the simulated <span class="inline-formula">CO<sub>2</sub></span> fluxes to the thickness of the newly grown mosses. The validated model was then used to assess the sensitivity to changes in climate forcing. The CoupModel reproduced the measured surface energy fluxes and showed high agreement with the observed soil temperature, water table depth, and NEE data. The simulated NEE varied slightly when changing the thickness of newly grown mosses and acrotelm from 0.2 to 0.4 m but showed significantly less uptake for a 1 m thickness. The simulated NEE was <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">95</mn><mo>±</mo><mn mathvariant="normal">19</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="104pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="87eede722685d851a9097df4f18c8042"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00001.svg" width="104pt" height="15pt" src="bg-22-1355-2025-ie00001.png"/></svg:svg></span></span> over the 3 evaluation years and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">101</mn><mo>±</mo><mn mathvariant="normal">64</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="110pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c026dd05a905dd2d7a95dfa3d48e09f0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00002.svg" width="110pt" height="15pt" src="bg-22-1355-2025-ie00002.png"/></svg:svg></span></span>, ranging from <span class="inline-formula">−219</span> to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">54</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5e8fd221120e057e7dcae48f5531e4b2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00003.svg" width="80pt" height="15pt" src="bg-22-1355-2025-ie00003.png"/></svg:svg></span></span>, with extended 28-year climate data. After 14 years of restoration, the peatland has a mean <span class="inline-formula">CO<sub>2</sub></span> uptake rate similar to pristine sites but with a much larger interannual variability, and in dry years, the restored peatland can switch back to a temporary <span class="inline-formula">CO<sub>2</sub></span> source. The model predicts a moderate reduction in <span class="inline-formula">CO<sub>2</sub></span> uptake but still a reasonable sink under future climate change conditions if the peatland is ecologically and hydrologically restored. The ability of the CoupModel to simulate the <span class="inline-formula">CO<sub>2</sub></span> dynamics and its thermo-hydro-drivers for restored peatlands has important implications for emission accounting and climate-smart management of drained peatlands.</p>
format Article
id doaj-art-d86f0b9cc7eb40ffb137c1ed6acaeb53
institution DOAJ
issn 1726-4170
1726-4189
language English
publishDate 2025-03-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj-art-d86f0b9cc7eb40ffb137c1ed6acaeb532025-08-20T02:47:52ZengCopernicus PublicationsBiogeosciences1726-41701726-41892025-03-01221355136810.5194/bg-22-1355-2025Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatlandH. He0I. B. Strachan1N. T. Roulet2Department of Geography, McGill University, Montréal, Quebec, CanadaDepartment of Geography and Planning, Queen's University, Kingston, Ontario, CanadaDepartment of Geography, McGill University, Montréal, Quebec, Canada<p>Restoration of drained and extracted peatlands can potentially return them to carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) sinks, thus acting as significant climate change mitigation. However, whether the restored sites will remain sinks or switch to sources with a changing climate is unknown. Therefore, we adapted the CoupModel to simulate ecosystem <span class="inline-formula">CO<sub>2</sub></span> fluxes and the associated influencing factors of a restored bog. The study site was a peatland in eastern Canada that was extracted for 8 years and left for 20 years before restoration. The model outputs were first evaluated against 3 years (representing 14–16 years post-restoration) of eddy covariance measurements of net ecosystem exchange (NEE), surface energy fluxes, soil temperature profiles, and water table depth data. A sensitivity analysis was conducted to evaluate the response of the simulated <span class="inline-formula">CO<sub>2</sub></span> fluxes to the thickness of the newly grown mosses. The validated model was then used to assess the sensitivity to changes in climate forcing. The CoupModel reproduced the measured surface energy fluxes and showed high agreement with the observed soil temperature, water table depth, and NEE data. The simulated NEE varied slightly when changing the thickness of newly grown mosses and acrotelm from 0.2 to 0.4 m but showed significantly less uptake for a 1 m thickness. The simulated NEE was <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">95</mn><mo>±</mo><mn mathvariant="normal">19</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="104pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="87eede722685d851a9097df4f18c8042"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00001.svg" width="104pt" height="15pt" src="bg-22-1355-2025-ie00001.png"/></svg:svg></span></span> over the 3 evaluation years and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">101</mn><mo>±</mo><mn mathvariant="normal">64</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="110pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c026dd05a905dd2d7a95dfa3d48e09f0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00002.svg" width="110pt" height="15pt" src="bg-22-1355-2025-ie00002.png"/></svg:svg></span></span>, ranging from <span class="inline-formula">−219</span> to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">54</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">C</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">yr</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5e8fd221120e057e7dcae48f5531e4b2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-22-1355-2025-ie00003.svg" width="80pt" height="15pt" src="bg-22-1355-2025-ie00003.png"/></svg:svg></span></span>, with extended 28-year climate data. After 14 years of restoration, the peatland has a mean <span class="inline-formula">CO<sub>2</sub></span> uptake rate similar to pristine sites but with a much larger interannual variability, and in dry years, the restored peatland can switch back to a temporary <span class="inline-formula">CO<sub>2</sub></span> source. The model predicts a moderate reduction in <span class="inline-formula">CO<sub>2</sub></span> uptake but still a reasonable sink under future climate change conditions if the peatland is ecologically and hydrologically restored. The ability of the CoupModel to simulate the <span class="inline-formula">CO<sub>2</sub></span> dynamics and its thermo-hydro-drivers for restored peatlands has important implications for emission accounting and climate-smart management of drained peatlands.</p>https://bg.copernicus.org/articles/22/1355/2025/bg-22-1355-2025.pdf
spellingShingle H. He
I. B. Strachan
N. T. Roulet
Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland
Biogeosciences
title Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland
title_full Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland
title_fullStr Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland
title_full_unstemmed Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland
title_short Simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland
title_sort simulating ecosystem carbon dioxide fluxes and their associated influencing factors for a restored peatland
url https://bg.copernicus.org/articles/22/1355/2025/bg-22-1355-2025.pdf
work_keys_str_mv AT hhe simulatingecosystemcarbondioxidefluxesandtheirassociatedinfluencingfactorsforarestoredpeatland
AT ibstrachan simulatingecosystemcarbondioxidefluxesandtheirassociatedinfluencingfactorsforarestoredpeatland
AT ntroulet simulatingecosystemcarbondioxidefluxesandtheirassociatedinfluencingfactorsforarestoredpeatland