Discovery of Novel Natural Inhibitors of H5N1 Neuraminidase Using Integrated Molecular Modeling and ADMET Prediction

The avian influenza virus, particularly the highly pathogenic H5N1 subtype, represents a significant public health threat due to its interspecies transmission potential and growing resistance to current antiviral therapies. To address this, the identification of novel and effective neuraminidase (NA...

Full description

Saved in:
Bibliographic Details
Main Authors: Afaf Zekri, Mebarka Ouassaf, Shafi Ullah Khan, Kannan R. R. Rengasamy, Bader Y. Alhatlani
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/6/622
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The avian influenza virus, particularly the highly pathogenic H5N1 subtype, represents a significant public health threat due to its interspecies transmission potential and growing resistance to current antiviral therapies. To address this, the identification of novel and effective neuraminidase (NA) inhibitors is critical. In this study, an integrated in silico strategy was employed, beginning with the generation of an energy-optimized pharmacophore model (e-pharmacophore, ADDN) based on the reference inhibitor Zanamivir. A virtual screening of 47,781 natural compounds from the PubChem database was performed, followed by molecular docking validated through an enrichment assay. Promising hits were further evaluated via ADMET predictions, density functional theory (DFT) calculations to assess chemical reactivity, and molecular dynamics (MD) simulations to examine the stability of the ligand–protein complexes. Three lead compounds (C1: CID 102209473, C2: CID 85692821, and C3: CID 45379525) demonstrated strong binding affinity toward NA. Their ADMET profiles predicted favorable bioavailability and low toxicity. The DFT analyses indicated suitable chemical reactivity, particularly for C2 and C3. The MD simulations confirmed the structural stability of all three ligand–NA complexes, supported by robust and complementary intermolecular interactions. In contrast, Zanamivir exhibited limited hydrophobic interactions, compromising its binding stability within the active site. These findings offer a rational foundation for further experimental validation and the development of next-generation NA inhibitors derived from natural sources.
ISSN:2306-5354