IM- LTS: An Integrated Model for Lung Tumor Segmentation using Neural Networks and IoMT

In recent days, Internet of Medical Things (IoMT) and Deep Learning (DL) techniques are broadly used in medical data processing in decision-making. A lung tumour, one of the most dangerous medical diseases, requires early diagnosis with a higher precision rate. With that concern, this work aims to d...

Full description

Saved in:
Bibliographic Details
Main Authors: Jayapradha J, Su-Cheng Haw, Naveen Palanichamy, Kok-Why Ng, Senthil Kumar Thillaigovindhan
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:MethodsX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2215016125000494
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent days, Internet of Medical Things (IoMT) and Deep Learning (DL) techniques are broadly used in medical data processing in decision-making. A lung tumour, one of the most dangerous medical diseases, requires early diagnosis with a higher precision rate. With that concern, this work aims to develop an Integrated Model (IM- LTS) for Lung Tumor Segmentation using Neural Networks (NN) and the Internet of Medical Things (IoMT). The model integrates two architectures, MobileNetV2 and U-NET, for classifying the input lung data. The input CT lung images are pre-processed using Z-score Normalization. The semantic features of lung images are extracted based on texture, intensity, and shape to provide information to the training network. • In this work, the transfer learning technique is incorporated, and the pre-trained NN was used as an encoder for the U-NET model for segmentation. Furthermore, Support Vector Machine is used here to classify input lung data as benign and malignant. • The results are measured based on the metrics such as, specificity, sensitivity, precision, accuracy and F-Score, using the data from benchmark datasets. Compared to the existing lung tumor segmentation and classification models, the proposed model provides better results and evidence for earlier disease diagnosis.
ISSN:2215-0161