Surfaces of infinite-type are non-Hopfian
We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface $\Sigma $ is of finite-type if and only if every proper map $f\colon \,\Sigma \rightarrow \Sigma $ of degree one is homotopic to a homeomorphism.
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-10-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.504/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206268670771200 |
---|---|
author | Das, Sumanta Gadgil, Siddhartha |
author_facet | Das, Sumanta Gadgil, Siddhartha |
author_sort | Das, Sumanta |
collection | DOAJ |
description | We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface $\Sigma $ is of finite-type if and only if every proper map $f\colon \,\Sigma \rightarrow \Sigma $ of degree one is homotopic to a homeomorphism. |
format | Article |
id | doaj-art-d84e747060b9466a8b1845e88d54dfab |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2023-10-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-d84e747060b9466a8b1845e88d54dfab2025-02-07T11:10:23ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-10-01361G81349135610.5802/crmath.50410.5802/crmath.504Surfaces of infinite-type are non-HopfianDas, Sumanta0Gadgil, Siddhartha1Department of Mathematics, Indian Institute of Science, Bangalore 560012, IndiaDepartment of Mathematics, Indian Institute of Science, Bangalore 560012, IndiaWe show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface $\Sigma $ is of finite-type if and only if every proper map $f\colon \,\Sigma \rightarrow \Sigma $ of degree one is homotopic to a homeomorphism.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.504/ |
spellingShingle | Das, Sumanta Gadgil, Siddhartha Surfaces of infinite-type are non-Hopfian Comptes Rendus. Mathématique |
title | Surfaces of infinite-type are non-Hopfian |
title_full | Surfaces of infinite-type are non-Hopfian |
title_fullStr | Surfaces of infinite-type are non-Hopfian |
title_full_unstemmed | Surfaces of infinite-type are non-Hopfian |
title_short | Surfaces of infinite-type are non-Hopfian |
title_sort | surfaces of infinite type are non hopfian |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.504/ |
work_keys_str_mv | AT dassumanta surfacesofinfinitetypearenonhopfian AT gadgilsiddhartha surfacesofinfinitetypearenonhopfian |