Surfaces of infinite-type are non-Hopfian

We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface $\Sigma $ is of finite-type if and only if every proper map $f\colon \,\Sigma \rightarrow \Sigma $ of degree one is homotopic to a homeomorphism.

Saved in:
Bibliographic Details
Main Authors: Das, Sumanta, Gadgil, Siddhartha
Format: Article
Language:English
Published: Académie des sciences 2023-10-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.504/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206268670771200
author Das, Sumanta
Gadgil, Siddhartha
author_facet Das, Sumanta
Gadgil, Siddhartha
author_sort Das, Sumanta
collection DOAJ
description We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface $\Sigma $ is of finite-type if and only if every proper map $f\colon \,\Sigma \rightarrow \Sigma $ of degree one is homotopic to a homeomorphism.
format Article
id doaj-art-d84e747060b9466a8b1845e88d54dfab
institution Kabale University
issn 1778-3569
language English
publishDate 2023-10-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-d84e747060b9466a8b1845e88d54dfab2025-02-07T11:10:23ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-10-01361G81349135610.5802/crmath.50410.5802/crmath.504Surfaces of infinite-type are non-HopfianDas, Sumanta0Gadgil, Siddhartha1Department of Mathematics, Indian Institute of Science, Bangalore 560012, IndiaDepartment of Mathematics, Indian Institute of Science, Bangalore 560012, IndiaWe show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface $\Sigma $ is of finite-type if and only if every proper map $f\colon \,\Sigma \rightarrow \Sigma $ of degree one is homotopic to a homeomorphism.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.504/
spellingShingle Das, Sumanta
Gadgil, Siddhartha
Surfaces of infinite-type are non-Hopfian
Comptes Rendus. Mathématique
title Surfaces of infinite-type are non-Hopfian
title_full Surfaces of infinite-type are non-Hopfian
title_fullStr Surfaces of infinite-type are non-Hopfian
title_full_unstemmed Surfaces of infinite-type are non-Hopfian
title_short Surfaces of infinite-type are non-Hopfian
title_sort surfaces of infinite type are non hopfian
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.504/
work_keys_str_mv AT dassumanta surfacesofinfinitetypearenonhopfian
AT gadgilsiddhartha surfacesofinfinitetypearenonhopfian