Comprehensive Quantitative Analysis of Coal-Based Liquids by Mask R-CNN-Assisted Two-Dimensional Gas Chromatography

A comprehensive understanding of the compositions and physicochemical properties of coal-based liquids is conducive to the rapid development of multipurpose, high-performance, and high-value functional chemicals. However, because of their complex compositions, coal-based liquids generate two-dimensi...

Full description

Saved in:
Bibliographic Details
Main Authors: Huan-Huan Fan, Xiang-Ling Wang, Jie Feng, Wen-Ying Li
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Separations
Subjects:
Online Access:https://www.mdpi.com/2297-8739/12/2/22
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A comprehensive understanding of the compositions and physicochemical properties of coal-based liquids is conducive to the rapid development of multipurpose, high-performance, and high-value functional chemicals. However, because of their complex compositions, coal-based liquids generate two-dimensional gas chromatography (GC × GC) chromatograms that are very complex and very time consuming to analyze. Therefore, the development of a method for accurately and rapidly analyzing chromatograms is crucial for understanding the chemical compositions and structures of coal-based liquids, such as direct coal liquefaction (DCL) oils and coal tar. In this study, DCL oils were distilled and qualitatively analyzed using GC × GC chromatograms. A deep-learning (DL) model was used to identify spectral features in GC × GC chromatograms and predominantly categorize the corresponding DCL oils as aliphatic alkanes, cycloalkanes, mono-, bi-, tri-, and tetracyclic aromatics. Regional labels associated with areas in the GC × GC chromatograms were fed into the mask-region-based convolutional neural network’s (Mask R-CNN’s) algorithm. The Mask R-CNN accurately and rapidly segmented the GC × GC chromatograms into regions representing different compounds, thereby automatically qualitatively classifying the compounds according to their spots in the chromatograms. Results show that the Mask R-CNN model’s accuracy, precision, recall, F1 value, and Intersection over Union (IoU) value were 93.71%, 96.99%, 96.27%, 0.95, and 0.93, respectively. DL is effective for visually comparing GC × GC chromatograms to analyze the compositions of chemical mixtures, accelerating GC × GC chromatogram interpretation and compound characterization and facilitating comparisons of the chemical compositions of multiple coal-based liquids produced in the coal and petroleum industry. Applying DL to analyze chromatograms improves analysis efficiency and provides a new method for analyzing GC × GC chromatograms, which is important for fast and accurate analysis.
ISSN:2297-8739