On the Upper Bounds of Fractional Metric Dimension of Symmetric Networks

Distance-based numeric parameters play a pivotal role in studying the structural aspects of networks which include connectivity, accessibility, centrality, clustering modularity, complexity, vulnerability, and robustness. Several tools like these also help to resolve the issues faced by the differen...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Javaid, Muhammad Kamran Aslam, Jia-Bao Liu
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2021/8417127
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Distance-based numeric parameters play a pivotal role in studying the structural aspects of networks which include connectivity, accessibility, centrality, clustering modularity, complexity, vulnerability, and robustness. Several tools like these also help to resolve the issues faced by the different branches of computer science and chemistry, namely, navigation, image processing, biometry, drug discovery, and similarities in chemical compounds. For this purpose, in this article, we are considering a family of networks that exhibits rotationally symmetric behaviour known as circular ladders consisting of triangular, quadrangular, and pentagonal faced ladders. We evaluate their upper bounds of fractional metric dimensions of the aforementioned networks.
ISSN:2314-4629
2314-4785