Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.

Idiopathic pulmonary fibrosis (IPF) is a chronic and usually progressive lung disease and the epithelial-mesenchymal transition (EMT) may play an important role in the pathogenesis of pulmonary fibrosis. IL-17 is a proinflammatory cytokine which promotes EMT profiles in lung inflammatory diseases. I...

Full description

Saved in:
Bibliographic Details
Main Authors: Ting Wang, Yuan Liu, Jing-Feng Zou, Zhen-Shun Cheng
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183972&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850079017920626688
author Ting Wang
Yuan Liu
Jing-Feng Zou
Zhen-Shun Cheng
author_facet Ting Wang
Yuan Liu
Jing-Feng Zou
Zhen-Shun Cheng
author_sort Ting Wang
collection DOAJ
description Idiopathic pulmonary fibrosis (IPF) is a chronic and usually progressive lung disease and the epithelial-mesenchymal transition (EMT) may play an important role in the pathogenesis of pulmonary fibrosis. IL-17 is a proinflammatory cytokine which promotes EMT profiles in lung inflammatory diseases. In this study, we investigated the effect of IL-17 on EMT in alveolar epithelial cell line A549 and the role of TGFβ1-Smad and ERK signaling pathways in the process. Morphological observation on the cells was performed under inverted microscope. The mRNA and protein expressions of E-cad and α-SMA were detected by quantitative RT-PCR and western blotting. The mRNA and protein expressions of TGF-β1 were analyzed via quantitative RT-PCR and ELISA. Expressions of Smad2/3, p-Smad2/3, ERK1/2, p-ERK1/2 and p-JNK were examined by western blotting. The results indicated that IL-17 can induce A549 cells to undergo morphological changes and phenotypic markers changes, such as down-regulated E-cad expression and up-regulated α-SMA expression. Additionally, IL-17 enhanced TGF-β1 expression and stimulated Smad2/3 and ERK1/2 phosphorylation in A549 cells. However, there were no significant differences in the expression of phosphorylated JNK in A549 cells with or without IL-17 treatment. SB431542 or U0126 treated cells showed inhibited morphological changes and phenotypic markers expression, such as up-regulated E-cad expression and down-regulated α-SMA expression. In summary, our results suggest that IL-17 can induce A549 alveolar epithelial cells to undergo EMT via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.
format Article
id doaj-art-d7c896e3c46447ac8edf43cfbb92aca1
institution DOAJ
issn 1932-6203
language English
publishDate 2017-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-d7c896e3c46447ac8edf43cfbb92aca12025-08-20T02:45:23ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01129e018397210.1371/journal.pone.0183972Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.Ting WangYuan LiuJing-Feng ZouZhen-Shun ChengIdiopathic pulmonary fibrosis (IPF) is a chronic and usually progressive lung disease and the epithelial-mesenchymal transition (EMT) may play an important role in the pathogenesis of pulmonary fibrosis. IL-17 is a proinflammatory cytokine which promotes EMT profiles in lung inflammatory diseases. In this study, we investigated the effect of IL-17 on EMT in alveolar epithelial cell line A549 and the role of TGFβ1-Smad and ERK signaling pathways in the process. Morphological observation on the cells was performed under inverted microscope. The mRNA and protein expressions of E-cad and α-SMA were detected by quantitative RT-PCR and western blotting. The mRNA and protein expressions of TGF-β1 were analyzed via quantitative RT-PCR and ELISA. Expressions of Smad2/3, p-Smad2/3, ERK1/2, p-ERK1/2 and p-JNK were examined by western blotting. The results indicated that IL-17 can induce A549 cells to undergo morphological changes and phenotypic markers changes, such as down-regulated E-cad expression and up-regulated α-SMA expression. Additionally, IL-17 enhanced TGF-β1 expression and stimulated Smad2/3 and ERK1/2 phosphorylation in A549 cells. However, there were no significant differences in the expression of phosphorylated JNK in A549 cells with or without IL-17 treatment. SB431542 or U0126 treated cells showed inhibited morphological changes and phenotypic markers expression, such as up-regulated E-cad expression and down-regulated α-SMA expression. In summary, our results suggest that IL-17 can induce A549 alveolar epithelial cells to undergo EMT via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183972&type=printable
spellingShingle Ting Wang
Yuan Liu
Jing-Feng Zou
Zhen-Shun Cheng
Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.
PLoS ONE
title Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.
title_full Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.
title_fullStr Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.
title_full_unstemmed Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.
title_short Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation.
title_sort interleukin 17 induces human alveolar epithelial to mesenchymal cell transition via the tgf β1 mediated smad2 3 and erk1 2 activation
url https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183972&type=printable
work_keys_str_mv AT tingwang interleukin17induceshumanalveolarepithelialtomesenchymalcelltransitionviathetgfb1mediatedsmad23anderk12activation
AT yuanliu interleukin17induceshumanalveolarepithelialtomesenchymalcelltransitionviathetgfb1mediatedsmad23anderk12activation
AT jingfengzou interleukin17induceshumanalveolarepithelialtomesenchymalcelltransitionviathetgfb1mediatedsmad23anderk12activation
AT zhenshuncheng interleukin17induceshumanalveolarepithelialtomesenchymalcelltransitionviathetgfb1mediatedsmad23anderk12activation