Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems
We describe the method of estimation of the largest Lyapunov exponent of nonsmooth dynamical systems using the properties of chaos synchronization. The method is based on the coupling of two identical dynamical systems and is tested on two examples of Duffing oscillator: (i) with added dry friction...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2000-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S1026022600000200 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832551838140858368 |
---|---|
author | Andrzej Stefanski Tomasz kapitaniak |
author_facet | Andrzej Stefanski Tomasz kapitaniak |
author_sort | Andrzej Stefanski |
collection | DOAJ |
description | We describe the method of estimation of the largest Lyapunov exponent of nonsmooth dynamical systems using the properties of chaos synchronization. The method is based on the coupling of two identical dynamical systems and is tested on two examples of Duffing
oscillator: (i) with added dry friction, (ii) with impacts. |
format | Article |
id | doaj-art-d7c649f8cf5e475780b1ac4ab40146bc |
institution | Kabale University |
issn | 1026-0226 1607-887X |
language | English |
publishDate | 2000-01-01 |
publisher | Wiley |
record_format | Article |
series | Discrete Dynamics in Nature and Society |
spelling | doaj-art-d7c649f8cf5e475780b1ac4ab40146bc2025-02-03T06:00:22ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2000-01-014320721510.1155/S1026022600000200Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systemsAndrzej Stefanski0Tomasz kapitaniak1Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, PolandDivision of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, PolandWe describe the method of estimation of the largest Lyapunov exponent of nonsmooth dynamical systems using the properties of chaos synchronization. The method is based on the coupling of two identical dynamical systems and is tested on two examples of Duffing oscillator: (i) with added dry friction, (ii) with impacts.http://dx.doi.org/10.1155/S1026022600000200Chaos synchronizationLyapunov exponentsNonsmooth systems. |
spellingShingle | Andrzej Stefanski Tomasz kapitaniak Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems Discrete Dynamics in Nature and Society Chaos synchronization Lyapunov exponents Nonsmooth systems. |
title | Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems |
title_full | Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems |
title_fullStr | Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems |
title_full_unstemmed | Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems |
title_short | Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems |
title_sort | using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems |
topic | Chaos synchronization Lyapunov exponents Nonsmooth systems. |
url | http://dx.doi.org/10.1155/S1026022600000200 |
work_keys_str_mv | AT andrzejstefanski usingchaossynchronizationtoestimatethelargestlyapunovexponentofnonsmoothsystems AT tomaszkapitaniak usingchaossynchronizationtoestimatethelargestlyapunovexponentofnonsmoothsystems |