Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems

We describe the method of estimation of the largest Lyapunov exponent of nonsmooth dynamical systems using the properties of chaos synchronization. The method is based on the coupling of two identical dynamical systems and is tested on two examples of Duffing oscillator: (i) with added dry friction...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrzej Stefanski, Tomasz kapitaniak
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:Discrete Dynamics in Nature and Society
Subjects:
Online Access:http://dx.doi.org/10.1155/S1026022600000200
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551838140858368
author Andrzej Stefanski
Tomasz kapitaniak
author_facet Andrzej Stefanski
Tomasz kapitaniak
author_sort Andrzej Stefanski
collection DOAJ
description We describe the method of estimation of the largest Lyapunov exponent of nonsmooth dynamical systems using the properties of chaos synchronization. The method is based on the coupling of two identical dynamical systems and is tested on two examples of Duffing oscillator: (i) with added dry friction, (ii) with impacts.
format Article
id doaj-art-d7c649f8cf5e475780b1ac4ab40146bc
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2000-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-d7c649f8cf5e475780b1ac4ab40146bc2025-02-03T06:00:22ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2000-01-014320721510.1155/S1026022600000200Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systemsAndrzej Stefanski0Tomasz kapitaniak1Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, PolandDivision of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, PolandWe describe the method of estimation of the largest Lyapunov exponent of nonsmooth dynamical systems using the properties of chaos synchronization. The method is based on the coupling of two identical dynamical systems and is tested on two examples of Duffing oscillator: (i) with added dry friction, (ii) with impacts.http://dx.doi.org/10.1155/S1026022600000200Chaos synchronizationLyapunov exponentsNonsmooth systems.
spellingShingle Andrzej Stefanski
Tomasz kapitaniak
Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems
Discrete Dynamics in Nature and Society
Chaos synchronization
Lyapunov exponents
Nonsmooth systems.
title Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems
title_full Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems
title_fullStr Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems
title_full_unstemmed Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems
title_short Using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems
title_sort using chaos synchronization to estimate the largest lyapunov exponent of nonsmooth systems
topic Chaos synchronization
Lyapunov exponents
Nonsmooth systems.
url http://dx.doi.org/10.1155/S1026022600000200
work_keys_str_mv AT andrzejstefanski usingchaossynchronizationtoestimatethelargestlyapunovexponentofnonsmoothsystems
AT tomaszkapitaniak usingchaossynchronizationtoestimatethelargestlyapunovexponentofnonsmoothsystems