Metric Dimensions of Metric Spaces over Vector Groups

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math>...

Full description

Saved in:
Bibliographic Details
Main Authors: Yiming Lei, Zhongrui Wang, Bing Dai
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/3/462
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850068327149338624
author Yiming Lei
Zhongrui Wang
Bing Dai
author_facet Yiming Lei
Zhongrui Wang
Bing Dai
author_sort Yiming Lei
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a metric space. A subset <i>A</i> of <i>X</i> resolves <i>X</i> if every point <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></semantics></math></inline-formula> is uniquely identified by the distances <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></semantics></math></inline-formula>. The metric dimension of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the minimum integer <i>k</i> for which a set <i>A</i> of cardinality <i>k</i> resolves <i>X</i>. We consider the metric spaces of Cayley graphs of vector groups over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Z</mi></semantics></math></inline-formula>. It was shown that for any generating set <i>S</i> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Z</mi></semantics></math></inline-formula>, the metric dimension of the metric space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>=</mo><mi>X</mi><mo>(</mo><mi mathvariant="double-struck">Z</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is, at most, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>max</mi><mi>S</mi></mrow></semantics></math></inline-formula>. Thus, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>=</mo><mi>X</mi><mo>(</mo><mi mathvariant="double-struck">Z</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> can be resolved by a finite set. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. We show that for any finite generating set <i>S</i> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">Z</mi><mi>n</mi></msup></semantics></math></inline-formula>, the metric space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>=</mo><mi>X</mi><mo>(</mo><msup><mi mathvariant="double-struck">Z</mi><mi>n</mi></msup><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> cannot be resolved by a finite set.
format Article
id doaj-art-d764733030ba4e3fbe60649ce77c0773
institution DOAJ
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-d764733030ba4e3fbe60649ce77c07732025-08-20T02:48:06ZengMDPI AGMathematics2227-73902025-01-0113346210.3390/math13030462Metric Dimensions of Metric Spaces over Vector GroupsYiming Lei0Zhongrui Wang1Bing Dai2College of Mathematical Sciences, Bohai University, Jinzhou 121013, ChinaCollege of Mathematical Sciences, Bohai University, Jinzhou 121013, ChinaCollege of Mathematical Sciences, Bohai University, Jinzhou 121013, ChinaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a metric space. A subset <i>A</i> of <i>X</i> resolves <i>X</i> if every point <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow></semantics></math></inline-formula> is uniquely identified by the distances <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>a</mi><mo>)</mo></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></semantics></math></inline-formula>. The metric dimension of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ρ</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the minimum integer <i>k</i> for which a set <i>A</i> of cardinality <i>k</i> resolves <i>X</i>. We consider the metric spaces of Cayley graphs of vector groups over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Z</mi></semantics></math></inline-formula>. It was shown that for any generating set <i>S</i> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">Z</mi></semantics></math></inline-formula>, the metric dimension of the metric space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>=</mo><mi>X</mi><mo>(</mo><mi mathvariant="double-struck">Z</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> is, at most, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>max</mi><mi>S</mi></mrow></semantics></math></inline-formula>. Thus, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>=</mo><mi>X</mi><mo>(</mo><mi mathvariant="double-struck">Z</mi><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> can be resolved by a finite set. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. We show that for any finite generating set <i>S</i> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">Z</mi><mi>n</mi></msup></semantics></math></inline-formula>, the metric space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>=</mo><mi>X</mi><mo>(</mo><msup><mi mathvariant="double-struck">Z</mi><mi>n</mi></msup><mo>,</mo><mi>S</mi><mo>)</mo></mrow></semantics></math></inline-formula> cannot be resolved by a finite set.https://www.mdpi.com/2227-7390/13/3/462Cayley graphmetric dimensionmetric spacevector group
spellingShingle Yiming Lei
Zhongrui Wang
Bing Dai
Metric Dimensions of Metric Spaces over Vector Groups
Mathematics
Cayley graph
metric dimension
metric space
vector group
title Metric Dimensions of Metric Spaces over Vector Groups
title_full Metric Dimensions of Metric Spaces over Vector Groups
title_fullStr Metric Dimensions of Metric Spaces over Vector Groups
title_full_unstemmed Metric Dimensions of Metric Spaces over Vector Groups
title_short Metric Dimensions of Metric Spaces over Vector Groups
title_sort metric dimensions of metric spaces over vector groups
topic Cayley graph
metric dimension
metric space
vector group
url https://www.mdpi.com/2227-7390/13/3/462
work_keys_str_mv AT yiminglei metricdimensionsofmetricspacesovervectorgroups
AT zhongruiwang metricdimensionsofmetricspacesovervectorgroups
AT bingdai metricdimensionsofmetricspacesovervectorgroups