A 30-meter resolution global land productivity dynamics dataset from 2013 to 2022

Abstract Land degradation is one of the most severe environmental challenges globally. To address its adverse impacts, the United Nations endorsed the Land Degradation Neutrality (SDG 15.3) within the Sustainable Development Goals in 2015. Trends in land productivity is a key sub-indicator for repor...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaosong Li, Tong Shen, Cesar Luis Garcia, Ingrid Teich, Yang Chen, Jin Chen, Amos Tiereyangn Kabo-Bah, Ziyu Yang, Xiaoxia Jia, Qi Lu, Mandakh Nyamtseren
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-04883-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850269263280996352
author Xiaosong Li
Tong Shen
Cesar Luis Garcia
Ingrid Teich
Yang Chen
Jin Chen
Amos Tiereyangn Kabo-Bah
Ziyu Yang
Xiaoxia Jia
Qi Lu
Mandakh Nyamtseren
author_facet Xiaosong Li
Tong Shen
Cesar Luis Garcia
Ingrid Teich
Yang Chen
Jin Chen
Amos Tiereyangn Kabo-Bah
Ziyu Yang
Xiaoxia Jia
Qi Lu
Mandakh Nyamtseren
author_sort Xiaosong Li
collection DOAJ
description Abstract Land degradation is one of the most severe environmental challenges globally. To address its adverse impacts, the United Nations endorsed the Land Degradation Neutrality (SDG 15.3) within the Sustainable Development Goals in 2015. Trends in land productivity is a key sub-indicator for reporting the progress toward SDG 15.3. Currently, the highest spatial resolution of global land productivity dynamics (LPD) products is 250-meter, which seriously hamper the SDG 15.3 reporting and intervention at the fine scale. Generating higher spatial resolution product faces significant challenges, including massive data processing, image cloud pollution, incompatible spatiotemporal resolution. This study, leveraging Google Earth Engine platform and utilizing Landsat-8 and MODIS imagery, employed the Gap-filling and Savitzky–Golay filtering algorithm and advanced spatiotemporal filtering method to obtain a high-quality 30-meter NDVI dataset, then the global 30-meter LPD product from 2013 to 2022 was generated by using the FAO-WOCAT methodology and compared against multiple datasets. This is the first global scale 30-meter LPD dataset, which provides essential data support for SDG 15.3 monitoring and reporting globally.
format Article
id doaj-art-d6f4fefa260b4af08fa0c151479d4088
institution OA Journals
issn 2052-4463
language English
publishDate 2025-04-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj-art-d6f4fefa260b4af08fa0c151479d40882025-08-20T01:53:11ZengNature PortfolioScientific Data2052-44632025-04-0112111510.1038/s41597-025-04883-3A 30-meter resolution global land productivity dynamics dataset from 2013 to 2022Xiaosong Li0Tong Shen1Cesar Luis Garcia2Ingrid Teich3Yang Chen4Jin Chen5Amos Tiereyangn Kabo-Bah6Ziyu Yang7Xiaoxia Jia8Qi Lu9Mandakh Nyamtseren10International Research Center of Big Data for Sustainable Development GoalsInternational Research Center of Big Data for Sustainable Development GoalsFood and Agriculture Organization of the United NationsFood and Agriculture Organization of the United NationsState Key Laboratory of Earth Surface Processes and Resource Ecology, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal UniversityState Key Laboratory of Earth Surface Processes and Resource Ecology, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal UniversityDepartment of Civil and Environmental Engineering, University of Energy and Natural ResourcesInternational Research Center of Big Data for Sustainable Development GoalsUnited Nations Convention to Combat DesertificationInstitute of Desertification Studies, Chinese Academy of ForestryInstitute of Geography and Geoecology, Mongolia Academy of SciencesAbstract Land degradation is one of the most severe environmental challenges globally. To address its adverse impacts, the United Nations endorsed the Land Degradation Neutrality (SDG 15.3) within the Sustainable Development Goals in 2015. Trends in land productivity is a key sub-indicator for reporting the progress toward SDG 15.3. Currently, the highest spatial resolution of global land productivity dynamics (LPD) products is 250-meter, which seriously hamper the SDG 15.3 reporting and intervention at the fine scale. Generating higher spatial resolution product faces significant challenges, including massive data processing, image cloud pollution, incompatible spatiotemporal resolution. This study, leveraging Google Earth Engine platform and utilizing Landsat-8 and MODIS imagery, employed the Gap-filling and Savitzky–Golay filtering algorithm and advanced spatiotemporal filtering method to obtain a high-quality 30-meter NDVI dataset, then the global 30-meter LPD product from 2013 to 2022 was generated by using the FAO-WOCAT methodology and compared against multiple datasets. This is the first global scale 30-meter LPD dataset, which provides essential data support for SDG 15.3 monitoring and reporting globally.https://doi.org/10.1038/s41597-025-04883-3
spellingShingle Xiaosong Li
Tong Shen
Cesar Luis Garcia
Ingrid Teich
Yang Chen
Jin Chen
Amos Tiereyangn Kabo-Bah
Ziyu Yang
Xiaoxia Jia
Qi Lu
Mandakh Nyamtseren
A 30-meter resolution global land productivity dynamics dataset from 2013 to 2022
Scientific Data
title A 30-meter resolution global land productivity dynamics dataset from 2013 to 2022
title_full A 30-meter resolution global land productivity dynamics dataset from 2013 to 2022
title_fullStr A 30-meter resolution global land productivity dynamics dataset from 2013 to 2022
title_full_unstemmed A 30-meter resolution global land productivity dynamics dataset from 2013 to 2022
title_short A 30-meter resolution global land productivity dynamics dataset from 2013 to 2022
title_sort 30 meter resolution global land productivity dynamics dataset from 2013 to 2022
url https://doi.org/10.1038/s41597-025-04883-3
work_keys_str_mv AT xiaosongli a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT tongshen a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT cesarluisgarcia a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT ingridteich a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT yangchen a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT jinchen a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT amostiereyangnkabobah a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT ziyuyang a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT xiaoxiajia a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT qilu a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT mandakhnyamtseren a30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT xiaosongli 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT tongshen 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT cesarluisgarcia 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT ingridteich 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT yangchen 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT jinchen 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT amostiereyangnkabobah 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT ziyuyang 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT xiaoxiajia 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT qilu 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022
AT mandakhnyamtseren 30meterresolutiongloballandproductivitydynamicsdatasetfrom2013to2022