A characterisation of higher torsion classes
Let $\mathcal {A}$ be an abelian length category containing a d-cluster tilting subcategory $\mathcal {M}$ . We prove that a subcategory of $\mathcal {M}$ is a d-torsion class if and only if it is closed under d-extensions and d-quotients. This generalises an important result for...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2025-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2050509424000732/type/journal_article |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206648462901248 |
---|---|
author | Jenny August Johanne Haugland Karin M. Jacobsen Sondre Kvamme Yann Palu Hipolito Treffinger |
author_facet | Jenny August Johanne Haugland Karin M. Jacobsen Sondre Kvamme Yann Palu Hipolito Treffinger |
author_sort | Jenny August |
collection | DOAJ |
description | Let
$\mathcal {A}$
be an abelian length category containing a d-cluster tilting subcategory
$\mathcal {M}$
. We prove that a subcategory of
$\mathcal {M}$
is a d-torsion class if and only if it is closed under d-extensions and d-quotients. This generalises an important result for classical torsion classes. As an application, we prove that the d-torsion classes in
$\mathcal {M}$
form a complete lattice. Moreover, we use the characterisation to classify the d-torsion classes associated to higher Auslander algebras of type
$\mathbb {A}$
, and give an algorithm to compute them explicitly. The classification is furthermore extended to the setup of higher Nakayama algebras. |
format | Article |
id | doaj-art-d6f4418aca6146b4b41c9c31bd5364d0 |
institution | Kabale University |
issn | 2050-5094 |
language | English |
publishDate | 2025-01-01 |
publisher | Cambridge University Press |
record_format | Article |
series | Forum of Mathematics, Sigma |
spelling | doaj-art-d6f4418aca6146b4b41c9c31bd5364d02025-02-07T07:50:24ZengCambridge University PressForum of Mathematics, Sigma2050-50942025-01-011310.1017/fms.2024.73A characterisation of higher torsion classesJenny August0https://orcid.org/0000-0001-7999-3858Johanne Haugland1https://orcid.org/0000-0003-3128-4715Karin M. Jacobsen2https://orcid.org/0000-0001-9535-6613Sondre Kvamme3https://orcid.org/0000-0002-4056-2417Yann Palu4https://orcid.org/0009-0008-1761-593XHipolito Treffinger5https://orcid.org/0000-0002-4573-9496Department of Mathematics, Aarhus Universitet, Ny Munkegade 118, DK-8000 Aarhus C, Denmark; E-mail:Department of Mathematical Sciences, NTNU, NO-7491 Trondheim, Norway; E-mail:Department of Mathematics, Aarhus Universitet, Ny Munkegade 118, DK-8000 Aarhus C, Denmark; E-mail:Department of Mathematical Sciences, NTNU, NO-7491 Trondheim, NorwayLAMFA, Université de Picardie Jules Verne, 33, rue Saint-Leu 80039 Amiens, France; E-mail:IMAS-CONICET, Pabellon I – Ciudad Universitaria, Buenos Aires, 1428, Argentina; E-mail:Let $\mathcal {A}$ be an abelian length category containing a d-cluster tilting subcategory $\mathcal {M}$ . We prove that a subcategory of $\mathcal {M}$ is a d-torsion class if and only if it is closed under d-extensions and d-quotients. This generalises an important result for classical torsion classes. As an application, we prove that the d-torsion classes in $\mathcal {M}$ form a complete lattice. Moreover, we use the characterisation to classify the d-torsion classes associated to higher Auslander algebras of type $\mathbb {A}$ , and give an algorithm to compute them explicitly. The classification is furthermore extended to the setup of higher Nakayama algebras.https://www.cambridge.org/core/product/identifier/S2050509424000732/type/journal_article16S9018E4018E1018G2518G99 |
spellingShingle | Jenny August Johanne Haugland Karin M. Jacobsen Sondre Kvamme Yann Palu Hipolito Treffinger A characterisation of higher torsion classes Forum of Mathematics, Sigma 16S90 18E40 18E10 18G25 18G99 |
title | A characterisation of higher torsion classes |
title_full | A characterisation of higher torsion classes |
title_fullStr | A characterisation of higher torsion classes |
title_full_unstemmed | A characterisation of higher torsion classes |
title_short | A characterisation of higher torsion classes |
title_sort | characterisation of higher torsion classes |
topic | 16S90 18E40 18E10 18G25 18G99 |
url | https://www.cambridge.org/core/product/identifier/S2050509424000732/type/journal_article |
work_keys_str_mv | AT jennyaugust acharacterisationofhighertorsionclasses AT johannehaugland acharacterisationofhighertorsionclasses AT karinmjacobsen acharacterisationofhighertorsionclasses AT sondrekvamme acharacterisationofhighertorsionclasses AT yannpalu acharacterisationofhighertorsionclasses AT hipolitotreffinger acharacterisationofhighertorsionclasses AT jennyaugust characterisationofhighertorsionclasses AT johannehaugland characterisationofhighertorsionclasses AT karinmjacobsen characterisationofhighertorsionclasses AT sondrekvamme characterisationofhighertorsionclasses AT yannpalu characterisationofhighertorsionclasses AT hipolitotreffinger characterisationofhighertorsionclasses |