Left ventricular segmentation method based on optimized UNet and improved CBAM: ESV and EDV tracking study.

This paper introduces an optimized nested UNet model for automated left ventricular segmentation in cardiac function assessment. We utilize the EchoNet-Dynamic dataset, which contains both video data and expert annotations. Unlike conventional methods such as DeepLabv3 that struggle with large model...

Full description

Saved in:
Bibliographic Details
Main Authors: Kerang Cao, Miao Zhao, Minghui Geng, Shuai Zheng, Hoekyung Jung
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0325794
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces an optimized nested UNet model for automated left ventricular segmentation in cardiac function assessment. We utilize the EchoNet-Dynamic dataset, which contains both video data and expert annotations. Unlike conventional methods such as DeepLabv3 that struggle with large model sizes and imprecise segmentation, Our proposed model introduces a deeper feature extraction module to effectively capture multi-scale features and reduce computational overhead. By integrating the CBAM (Attention module) attention mechanism and a lightweight SimAM (Simple Attention Module) module, we enhance feature selectivity and minimize redundancy. To further stabilize training and address gradient issues, we combine binary cross-entropy and Dice loss functions. Experimental results reveal that our model significantly outperforms existing methods, achieving a 1.05% increase in the Dice coefficient and reducing model size to 15% of the original. These improvements not only enhance the accuracy of cardiac function assessments but also provide a more efficient solution for automated diagnosis in clinical practice.
ISSN:1932-6203