Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West Java

Random Forest is an ensemble learning algorithm that combines multiple decision trees to generate a more stable and accurate classification model. This study aims to optimize Random Forest parameters for classifying school-age students' eligibility for the Kartu Indonesia Pintar (KIP) in West J...

Full description

Saved in:
Bibliographic Details
Main Authors: Silfiana Lis Setyowati, Asyifah Qalbi, Rafika Aristawidya, Bagus Sartono, Aulia Rizki Firdawanti
Format: Article
Language:English
Published: Department of Mathematics, Universitas Negeri Gorontalo 2025-02-01
Series:Jambura Journal of Mathematics
Subjects:
Online Access:https://ejurnal.ung.ac.id/index.php/jjom/article/view/28736
Tags: Add Tag
No Tags, Be the first to tag this record!

Similar Items