Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West Java

Random Forest is an ensemble learning algorithm that combines multiple decision trees to generate a more stable and accurate classification model. This study aims to optimize Random Forest parameters for classifying school-age students' eligibility for the Kartu Indonesia Pintar (KIP) in West J...

Full description

Saved in:
Bibliographic Details
Main Authors: Silfiana Lis Setyowati, Asyifah Qalbi, Rafika Aristawidya, Bagus Sartono, Aulia Rizki Firdawanti
Format: Article
Language:English
Published: Department of Mathematics, Universitas Negeri Gorontalo 2025-02-01
Series:Jambura Journal of Mathematics
Subjects:
Online Access:https://ejurnal.ung.ac.id/index.php/jjom/article/view/28736
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850077374824054784
author Silfiana Lis Setyowati
Asyifah Qalbi
Rafika Aristawidya
Bagus Sartono
Aulia Rizki Firdawanti
author_facet Silfiana Lis Setyowati
Asyifah Qalbi
Rafika Aristawidya
Bagus Sartono
Aulia Rizki Firdawanti
author_sort Silfiana Lis Setyowati
collection DOAJ
description Random Forest is an ensemble learning algorithm that combines multiple decision trees to generate a more stable and accurate classification model. This study aims to optimize Random Forest parameters for classifying school-age students' eligibility for the Kartu Indonesia Pintar (KIP) in West Java, based on economic factors. The research uses secondary data from the 2023 National Socio-Economic Survey (SUSENAS) of West Java, with a sample size of 13,044 individuals. To address class imbalance, Synthetic Minority Oversampling Technique (SMOTE) is applied. Hyperparameter tuning through grid search identifies the optimal combination of parameters, including the number of trees (ntree), random variables per split (mtry), and terminal node size (node_size). Model performance is evaluated using balanced accuracy, sensitivity, and specificity. Results indicate that the optimal parameters (mtry = 5, ntree = 674, node_size = 26) yield a balanced accuracy of 65.47%. Significant variables include PKH status, floor area of the house, source of drinking water, and building material type. The model accurately identifies students in need of educational assistance. In conclusion, optimizing Random Forest parameters improves the accuracy of KIP eligibility classification, supporting educational equity policies in West Java. These findings provide a foundation for developing more effective beneficiary selection systems for educational aid.
format Article
id doaj-art-d6bbf8c8c3904894852ae7d88ffe9bf5
institution DOAJ
issn 2654-5616
2656-1344
language English
publishDate 2025-02-01
publisher Department of Mathematics, Universitas Negeri Gorontalo
record_format Article
series Jambura Journal of Mathematics
spelling doaj-art-d6bbf8c8c3904894852ae7d88ffe9bf52025-08-20T02:45:49ZengDepartment of Mathematics, Universitas Negeri GorontaloJambura Journal of Mathematics2654-56162656-13442025-02-0171404810.37905/jjom.v7i1.287369097Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West JavaSilfiana Lis Setyowati0Asyifah Qalbi1Rafika Aristawidya2Bagus Sartono3Aulia Rizki Firdawanti4IPB University, Ministry of Higher Education, Science, and TechnologyIPB UniversityIPB UniversityIPB UniversityIPB UniversityRandom Forest is an ensemble learning algorithm that combines multiple decision trees to generate a more stable and accurate classification model. This study aims to optimize Random Forest parameters for classifying school-age students' eligibility for the Kartu Indonesia Pintar (KIP) in West Java, based on economic factors. The research uses secondary data from the 2023 National Socio-Economic Survey (SUSENAS) of West Java, with a sample size of 13,044 individuals. To address class imbalance, Synthetic Minority Oversampling Technique (SMOTE) is applied. Hyperparameter tuning through grid search identifies the optimal combination of parameters, including the number of trees (ntree), random variables per split (mtry), and terminal node size (node_size). Model performance is evaluated using balanced accuracy, sensitivity, and specificity. Results indicate that the optimal parameters (mtry = 5, ntree = 674, node_size = 26) yield a balanced accuracy of 65.47%. Significant variables include PKH status, floor area of the house, source of drinking water, and building material type. The model accurately identifies students in need of educational assistance. In conclusion, optimizing Random Forest parameters improves the accuracy of KIP eligibility classification, supporting educational equity policies in West Java. These findings provide a foundation for developing more effective beneficiary selection systems for educational aid.https://ejurnal.ung.ac.id/index.php/jjom/article/view/28736kartu indonesia pintar (kip)random forestsmoteoptimal parameterhyperparameter tuning
spellingShingle Silfiana Lis Setyowati
Asyifah Qalbi
Rafika Aristawidya
Bagus Sartono
Aulia Rizki Firdawanti
Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West Java
Jambura Journal of Mathematics
kartu indonesia pintar (kip)
random forest
smote
optimal parameter
hyperparameter tuning
title Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West Java
title_full Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West Java
title_fullStr Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West Java
title_full_unstemmed Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West Java
title_short Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West Java
title_sort optimizing random forest parameters with hyperparameter tuning for classifying school age kip eligibility in west java
topic kartu indonesia pintar (kip)
random forest
smote
optimal parameter
hyperparameter tuning
url https://ejurnal.ung.ac.id/index.php/jjom/article/view/28736
work_keys_str_mv AT silfianalissetyowati optimizingrandomforestparameterswithhyperparametertuningforclassifyingschoolagekipeligibilityinwestjava
AT asyifahqalbi optimizingrandomforestparameterswithhyperparametertuningforclassifyingschoolagekipeligibilityinwestjava
AT rafikaaristawidya optimizingrandomforestparameterswithhyperparametertuningforclassifyingschoolagekipeligibilityinwestjava
AT bagussartono optimizingrandomforestparameterswithhyperparametertuningforclassifyingschoolagekipeligibilityinwestjava
AT auliarizkifirdawanti optimizingrandomforestparameterswithhyperparametertuningforclassifyingschoolagekipeligibilityinwestjava