Lorentzian Para-Kenmotsu Manifolds Within the Framework of ∗-Conformal η-Ricci Soliton

The present article intends to study the ∗-conformal η-Ricci soliton on n-LPK (n-dimensional Lorentzian para-Kenmotsu) manifolds with curvature constraints. On n-LPK, we derive certain results of ∗-conformal η-Ricci soliton satisfying the Codazzi-type equation, Rξ,L·S=0, the projective flatness of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Shyam Kishor, Arun Kumar Bhardwaj, Naveen Mani, Rahul Shukla
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/jama/6684661
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850079087216820224
author Shyam Kishor
Arun Kumar Bhardwaj
Naveen Mani
Rahul Shukla
author_facet Shyam Kishor
Arun Kumar Bhardwaj
Naveen Mani
Rahul Shukla
author_sort Shyam Kishor
collection DOAJ
description The present article intends to study the ∗-conformal η-Ricci soliton on n-LPK (n-dimensional Lorentzian para-Kenmotsu) manifolds with curvature constraints. On n-LPK, we derive certain results of ∗-conformal η-Ricci soliton satisfying the Codazzi-type equation, Rξ,L·S=0, the projective flatness of the n-LPK manifold. At last, we conclude with an n-LPK manifold with conformal η-Ricci solitons using a suitable example.
format Article
id doaj-art-d6463aea34874cc1a206a1c9e32434ea
institution DOAJ
issn 1687-0042
language English
publishDate 2025-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-d6463aea34874cc1a206a1c9e32434ea2025-08-20T02:45:19ZengWileyJournal of Applied Mathematics1687-00422025-01-01202510.1155/jama/6684661Lorentzian Para-Kenmotsu Manifolds Within the Framework of ∗-Conformal η-Ricci SolitonShyam Kishor0Arun Kumar Bhardwaj1Naveen Mani2Rahul Shukla3Department of Mathematics and AstronomyDepartment of Mathematics and AstronomyDepartment of MathematicsDepartment of Mathematical Sciences and ComputingThe present article intends to study the ∗-conformal η-Ricci soliton on n-LPK (n-dimensional Lorentzian para-Kenmotsu) manifolds with curvature constraints. On n-LPK, we derive certain results of ∗-conformal η-Ricci soliton satisfying the Codazzi-type equation, Rξ,L·S=0, the projective flatness of the n-LPK manifold. At last, we conclude with an n-LPK manifold with conformal η-Ricci solitons using a suitable example.http://dx.doi.org/10.1155/jama/6684661
spellingShingle Shyam Kishor
Arun Kumar Bhardwaj
Naveen Mani
Rahul Shukla
Lorentzian Para-Kenmotsu Manifolds Within the Framework of ∗-Conformal η-Ricci Soliton
Journal of Applied Mathematics
title Lorentzian Para-Kenmotsu Manifolds Within the Framework of ∗-Conformal η-Ricci Soliton
title_full Lorentzian Para-Kenmotsu Manifolds Within the Framework of ∗-Conformal η-Ricci Soliton
title_fullStr Lorentzian Para-Kenmotsu Manifolds Within the Framework of ∗-Conformal η-Ricci Soliton
title_full_unstemmed Lorentzian Para-Kenmotsu Manifolds Within the Framework of ∗-Conformal η-Ricci Soliton
title_short Lorentzian Para-Kenmotsu Manifolds Within the Framework of ∗-Conformal η-Ricci Soliton
title_sort lorentzian para kenmotsu manifolds within the framework of ∗ conformal η ricci soliton
url http://dx.doi.org/10.1155/jama/6684661
work_keys_str_mv AT shyamkishor lorentzianparakenmotsumanifoldswithintheframeworkofconformalēriccisoliton
AT arunkumarbhardwaj lorentzianparakenmotsumanifoldswithintheframeworkofconformalēriccisoliton
AT naveenmani lorentzianparakenmotsumanifoldswithintheframeworkofconformalēriccisoliton
AT rahulshukla lorentzianparakenmotsumanifoldswithintheframeworkofconformalēriccisoliton