Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)

Monitoring land cover changes is crucial for understanding how natural processes and human activities such as deforestation, urbanization, and agriculture reshape the environment. We introduce a publicly available dataset covering the entire United States from 2016 to 2024, integrating six spectral...

Full description

Saved in:
Bibliographic Details
Main Authors: Antonio Rangel, Juan Terven, Diana-Margarita Córdova-Esparza, Julio-Alejandro Romero-González, Alfonso Ramírez-Pedraza, Edgar A. Chávez-Urbiola, Francisco. J. Willars-Rodríguez, Gendry Alfonso-Francia
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Data
Subjects:
Online Access:https://www.mdpi.com/2306-5729/10/5/67
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850127157797322752
author Antonio Rangel
Juan Terven
Diana-Margarita Córdova-Esparza
Julio-Alejandro Romero-González
Alfonso Ramírez-Pedraza
Edgar A. Chávez-Urbiola
Francisco. J. Willars-Rodríguez
Gendry Alfonso-Francia
author_facet Antonio Rangel
Juan Terven
Diana-Margarita Córdova-Esparza
Julio-Alejandro Romero-González
Alfonso Ramírez-Pedraza
Edgar A. Chávez-Urbiola
Francisco. J. Willars-Rodríguez
Gendry Alfonso-Francia
author_sort Antonio Rangel
collection DOAJ
description Monitoring land cover changes is crucial for understanding how natural processes and human activities such as deforestation, urbanization, and agriculture reshape the environment. We introduce a publicly available dataset covering the entire United States from 2016 to 2024, integrating six spectral bands (Red, Green, Blue, NIR, SWIR1, and SWIR2) from Sentinel-2 imagery with pixel-level land cover annotations from the Dynamic World dataset. This combined resource provides a consistent, high-resolution view of the nation’s landscapes, enabling detailed analysis of both short- and long-term changes. To ease the complexities of remote sensing data handling, we supply comprehensive code for data loading, basic analysis, and visualization. We also demonstrate an example application—semantic segmentation with state-of-the-art models—to evaluate dataset quality and reveal challenges associated with minority classes. The dataset and accompanying tools facilitate research in environmental monitoring, urban planning, and climate adaptation, offering a valuable asset for understanding evolving land cover dynamics over time.
format Article
id doaj-art-d633e8ccfd024de0bce13c49e1768e88
institution OA Journals
issn 2306-5729
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Data
spelling doaj-art-d633e8ccfd024de0bce13c49e1768e882025-08-20T02:33:44ZengMDPI AGData2306-57292025-05-011056710.3390/data10050067Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)Antonio Rangel0Juan Terven1Diana-Margarita Córdova-Esparza2Julio-Alejandro Romero-González3Alfonso Ramírez-Pedraza4Edgar A. Chávez-Urbiola5Francisco. J. Willars-Rodríguez6Gendry Alfonso-Francia7CICATA-Qro, Instituto Politecnico Nacional, Queretaro 76090, MexicoCICATA-Qro, Instituto Politecnico Nacional, Queretaro 76090, MexicoFacultad de Informática, Universidad Autónoma de Querétaro, Queretaro 76230, MexicoFacultad de Informática, Universidad Autónoma de Querétaro, Queretaro 76230, MexicoCICATA-Qro, Instituto Politecnico Nacional, Queretaro 76090, MexicoCICATA-Qro, Instituto Politecnico Nacional, Queretaro 76090, MexicoCICATA-Qro, Instituto Politecnico Nacional, Queretaro 76090, MexicoCICATA-Qro, Instituto Politecnico Nacional, Queretaro 76090, MexicoMonitoring land cover changes is crucial for understanding how natural processes and human activities such as deforestation, urbanization, and agriculture reshape the environment. We introduce a publicly available dataset covering the entire United States from 2016 to 2024, integrating six spectral bands (Red, Green, Blue, NIR, SWIR1, and SWIR2) from Sentinel-2 imagery with pixel-level land cover annotations from the Dynamic World dataset. This combined resource provides a consistent, high-resolution view of the nation’s landscapes, enabling detailed analysis of both short- and long-term changes. To ease the complexities of remote sensing data handling, we supply comprehensive code for data loading, basic analysis, and visualization. We also demonstrate an example application—semantic segmentation with state-of-the-art models—to evaluate dataset quality and reveal challenges associated with minority classes. The dataset and accompanying tools facilitate research in environmental monitoring, urban planning, and climate adaptation, offering a valuable asset for understanding evolving land cover dynamics over time.https://www.mdpi.com/2306-5729/10/5/67LULCchange detectionremote sensing
spellingShingle Antonio Rangel
Juan Terven
Diana-Margarita Córdova-Esparza
Julio-Alejandro Romero-González
Alfonso Ramírez-Pedraza
Edgar A. Chávez-Urbiola
Francisco. J. Willars-Rodríguez
Gendry Alfonso-Francia
Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)
Data
LULC
change detection
remote sensing
title Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)
title_full Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)
title_fullStr Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)
title_full_unstemmed Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)
title_short Tracking U.S. Land Cover Changes: A Dataset of Sentinel-2 Imagery and Dynamic World Labels (2016–2024)
title_sort tracking u s land cover changes a dataset of sentinel 2 imagery and dynamic world labels 2016 2024
topic LULC
change detection
remote sensing
url https://www.mdpi.com/2306-5729/10/5/67
work_keys_str_mv AT antoniorangel trackinguslandcoverchangesadatasetofsentinel2imageryanddynamicworldlabels20162024
AT juanterven trackinguslandcoverchangesadatasetofsentinel2imageryanddynamicworldlabels20162024
AT dianamargaritacordovaesparza trackinguslandcoverchangesadatasetofsentinel2imageryanddynamicworldlabels20162024
AT julioalejandroromerogonzalez trackinguslandcoverchangesadatasetofsentinel2imageryanddynamicworldlabels20162024
AT alfonsoramirezpedraza trackinguslandcoverchangesadatasetofsentinel2imageryanddynamicworldlabels20162024
AT edgarachavezurbiola trackinguslandcoverchangesadatasetofsentinel2imageryanddynamicworldlabels20162024
AT franciscojwillarsrodriguez trackinguslandcoverchangesadatasetofsentinel2imageryanddynamicworldlabels20162024
AT gendryalfonsofrancia trackinguslandcoverchangesadatasetofsentinel2imageryanddynamicworldlabels20162024