Cross-field Diffusion Effects on Particle Transport in a Solar Coronal Flux Rope

Solar energetic particles associated with solar flares and coronal mass ejections (CMEs) are key agents of space weather phenomena, posing severe threats to spacecraft and astronauts. Recent observations by Parker Solar Probe indicate that the magnetic flux ropes of a CME can trap energetic particle...

Full description

Saved in:
Bibliographic Details
Main Authors: Edin Husidic, Nicolas Wijsen, Luis Linan, Michaela Brchnelova, Rami Vainio, Stefaan Poedts
Format: Article
Language:English
Published: IOP Publishing 2024-01-01
Series:The Astrophysical Journal Letters
Subjects:
Online Access:https://doi.org/10.3847/2041-8213/ad8d56
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850265967866675200
author Edin Husidic
Nicolas Wijsen
Luis Linan
Michaela Brchnelova
Rami Vainio
Stefaan Poedts
author_facet Edin Husidic
Nicolas Wijsen
Luis Linan
Michaela Brchnelova
Rami Vainio
Stefaan Poedts
author_sort Edin Husidic
collection DOAJ
description Solar energetic particles associated with solar flares and coronal mass ejections (CMEs) are key agents of space weather phenomena, posing severe threats to spacecraft and astronauts. Recent observations by Parker Solar Probe indicate that the magnetic flux ropes of a CME can trap energetic particles and act as barriers, preventing other particles from crossing. In this Letter, we introduce the novel COCONUT+PARADISE model to investigate the confinement of energetic particles within a flux rope and the effects of cross-field diffusion (CFD) on particle transport in the solar corona, particularly in the presence of a CME. Using the global magnetohydrodynamic coronal model COolfluid COroNal UnsTructured (COCONUT), we generate background configurations containing a CME modeled as a Titov–Démoulin flux rope (TDFR). We then utilize the particle transport code PArticle Radiation Asset Directed at Interplanetary Space Exploration (PARADISE) to inject monoenergetic 100 keV protons inside one of the TDFR legs near its footpoint and evolve the particles through the COCONUT backgrounds. To study CFD, we employ two different approaches regarding the perpendicular proton mean free path (MFP): a constant MFP and a Larmor radius-dependent MFP. We contrast these results with those obtained without CFD. While particles remain fully trapped within the TDFR without CFD, we find that even relatively small perpendicular MFP values allow particles on the outer layers to escape. In contrast, the initially interior trapped particles stay largely confined. Finally, we highlight how our model and this Letter's results are relevant for future research on particle acceleration and transport in an extended domain encompassing both the corona and inner heliosphere.
format Article
id doaj-art-d62e5acf75014e929e5731e2cad43dde
institution OA Journals
issn 2041-8205
language English
publishDate 2024-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Letters
spelling doaj-art-d62e5acf75014e929e5731e2cad43dde2025-08-20T01:54:16ZengIOP PublishingThe Astrophysical Journal Letters2041-82052024-01-019762L3110.3847/2041-8213/ad8d56Cross-field Diffusion Effects on Particle Transport in a Solar Coronal Flux RopeEdin Husidic0https://orcid.org/0000-0002-1349-3663Nicolas Wijsen1https://orcid.org/0000-0001-6344-6956Luis Linan2https://orcid.org/0000-0002-4014-1815Michaela Brchnelova3https://orcid.org/0000-0003-0874-2669Rami Vainio4https://orcid.org/0000-0002-3298-2067Stefaan Poedts5https://orcid.org/0000-0002-1743-0651Centre for Mathematical Plasma Astrophysics , Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium ; edin.husidic@kuleuven.be; Department of Physics and Astronomy, University of Turku , 20014 Turku, FinlandCentre for Mathematical Plasma Astrophysics , Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium ; edin.husidic@kuleuven.beCentre for Mathematical Plasma Astrophysics , Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium ; edin.husidic@kuleuven.beCentre for Mathematical Plasma Astrophysics , Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium ; edin.husidic@kuleuven.beDepartment of Physics and Astronomy, University of Turku , 20014 Turku, FinlandCentre for Mathematical Plasma Astrophysics , Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium ; edin.husidic@kuleuven.be; Institute of Physics, University of Maria Curie-Skłodowska , ul. Radziszewskiego 10,820-031 Lublin, PolandSolar energetic particles associated with solar flares and coronal mass ejections (CMEs) are key agents of space weather phenomena, posing severe threats to spacecraft and astronauts. Recent observations by Parker Solar Probe indicate that the magnetic flux ropes of a CME can trap energetic particles and act as barriers, preventing other particles from crossing. In this Letter, we introduce the novel COCONUT+PARADISE model to investigate the confinement of energetic particles within a flux rope and the effects of cross-field diffusion (CFD) on particle transport in the solar corona, particularly in the presence of a CME. Using the global magnetohydrodynamic coronal model COolfluid COroNal UnsTructured (COCONUT), we generate background configurations containing a CME modeled as a Titov–Démoulin flux rope (TDFR). We then utilize the particle transport code PArticle Radiation Asset Directed at Interplanetary Space Exploration (PARADISE) to inject monoenergetic 100 keV protons inside one of the TDFR legs near its footpoint and evolve the particles through the COCONUT backgrounds. To study CFD, we employ two different approaches regarding the perpendicular proton mean free path (MFP): a constant MFP and a Larmor radius-dependent MFP. We contrast these results with those obtained without CFD. While particles remain fully trapped within the TDFR without CFD, we find that even relatively small perpendicular MFP values allow particles on the outer layers to escape. In contrast, the initially interior trapped particles stay largely confined. Finally, we highlight how our model and this Letter's results are relevant for future research on particle acceleration and transport in an extended domain encompassing both the corona and inner heliosphere.https://doi.org/10.3847/2041-8213/ad8d56Solar windSolar coronal mass ejectionsSolar particle emissionSolar coronaSolar energetic particles
spellingShingle Edin Husidic
Nicolas Wijsen
Luis Linan
Michaela Brchnelova
Rami Vainio
Stefaan Poedts
Cross-field Diffusion Effects on Particle Transport in a Solar Coronal Flux Rope
The Astrophysical Journal Letters
Solar wind
Solar coronal mass ejections
Solar particle emission
Solar corona
Solar energetic particles
title Cross-field Diffusion Effects on Particle Transport in a Solar Coronal Flux Rope
title_full Cross-field Diffusion Effects on Particle Transport in a Solar Coronal Flux Rope
title_fullStr Cross-field Diffusion Effects on Particle Transport in a Solar Coronal Flux Rope
title_full_unstemmed Cross-field Diffusion Effects on Particle Transport in a Solar Coronal Flux Rope
title_short Cross-field Diffusion Effects on Particle Transport in a Solar Coronal Flux Rope
title_sort cross field diffusion effects on particle transport in a solar coronal flux rope
topic Solar wind
Solar coronal mass ejections
Solar particle emission
Solar corona
Solar energetic particles
url https://doi.org/10.3847/2041-8213/ad8d56
work_keys_str_mv AT edinhusidic crossfielddiffusioneffectsonparticletransportinasolarcoronalfluxrope
AT nicolaswijsen crossfielddiffusioneffectsonparticletransportinasolarcoronalfluxrope
AT luislinan crossfielddiffusioneffectsonparticletransportinasolarcoronalfluxrope
AT michaelabrchnelova crossfielddiffusioneffectsonparticletransportinasolarcoronalfluxrope
AT ramivainio crossfielddiffusioneffectsonparticletransportinasolarcoronalfluxrope
AT stefaanpoedts crossfielddiffusioneffectsonparticletransportinasolarcoronalfluxrope