Positive Solutions of a Diffusive Predator-Prey System including Disease for Prey and Equipped with Dirichlet Boundary Condition
We study a three-dimensional system of a diffusive predator-prey model including disease spread for prey and with Dirichlet boundary condition and Michaelis-Menten functional response. By semigroup method, we are able to achieve existence of a global solution of this system. Extinction of this syste...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2016-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2016/2323752 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We study a three-dimensional system of a diffusive predator-prey model including disease spread for prey and with Dirichlet boundary condition and Michaelis-Menten functional response. By semigroup method, we are able to achieve existence of a global solution of this system. Extinction of this system is established by spectral method. By using bifurcation theory and fixed point index theory, we obtain existence and nonexistence of inhomogeneous positive solutions of this system in steady state. |
|---|---|
| ISSN: | 1026-0226 1607-887X |