Grinding and Mixing Uniformity in a Feed Preparation Device with Four-Sided Jagged Hammers and Impact-Mixing Mechanisms

This article considers the study of the grinding and homogeneity of a feed mixture in a device that combines the processes of grinding and mixing. It was found that it is important to improve the working elements with the elimination of passive zones. In this regard, the purpose of this study is to...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruslan Iskakov, Alexandr Gulyarenko
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:AgriEngineering
Subjects:
Online Access:https://www.mdpi.com/2624-7402/7/6/183
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article considers the study of the grinding and homogeneity of a feed mixture in a device that combines the processes of grinding and mixing. It was found that it is important to improve the working elements with the elimination of passive zones. In this regard, the purpose of this study is to improve the working elements of the feed preparation device with an assessment of the quality of the grinding and homogeneity of the feed mixture. For the efficiency of grinding, serrated surfaces have been developed along four planes of the hammer, which maximizes the use of the working surfaces of the hammer and eliminates passive zones. The design parameters of the serrated surfaces are the step between the tops of adjacent serrations (t, mm), the height of the serrations (h, mm), the angle of inclination (α, °) and the sharpness of the serrations (o<sub>z</sub>, °). It was found that it is necessary to strive to reduce the step between the tops of adjacent serrations t. The results of the experiments with four-sided serrated hammers showed that a significant portion of the crushed grain waste particles was smaller than 1 mm (25.36–34.34%); the particle size was over 1 mm and less than 2 mm (35.09–44.22%); the particle size was over 2 mm and less than 3.55 mm (27.59–28.73%), and an insignificant portion of particles was larger than 3.55 mm (0.99–2.98%). The experiments yielded the following results on the homogeneity of the mixing of grain waste and the control component: 86.6% (after 2 min), 87.2% (after 4 min) and 87.6% (after 6 min). The feed preparation device with the developed four-sided serrated hammers and impact-mixing mechanisms can produce sufficiently crushed and uniformly mixed feed mass.
ISSN:2624-7402