Exergy and Irreversibility Analysis in Non-Equilibrium Thermal Porous Rectangular Channel

This paper deals with laminar forced convection in a rectangular channel through a non-equilibrium thermal gas saturated porous medium. The thermodynamic aspects of this flow, including the entropy generation rate, irreversibility, and exergy, are carefully investigated. The governing conservation e...

Full description

Saved in:
Bibliographic Details
Main Authors: Billel Yessad, Abdessamed Medelfef, Abderraouf Arabi, Ferhat Souidi
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/10/3/71
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with laminar forced convection in a rectangular channel through a non-equilibrium thermal gas saturated porous medium. The thermodynamic aspects of this flow, including the entropy generation rate, irreversibility, and exergy, are carefully investigated. The governing conservation equations of momentum, mass, and energy are solved numerically using the finite volume method. The effects of Reynolds number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula> (ranging from 100 to 2000), Darcy number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>a</mi></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced separators="|"><mrow><mi mathvariant="normal">f</mi><mi mathvariant="normal">r</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">m</mi><mo> </mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">o</mi><mo> </mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfenced></mrow></semantics></math></inline-formula>, and Biot number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>i</mi></mrow></semantics></math></inline-formula> (from 10<sup>−3</sup> to 10<sup>3</sup>) on the entropy generation, exergy, and irreversibility, for which the Gouy-Stodola relation is employed, are then presented. The results reveal that at low <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula> and high <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>i</mi></mrow></semantics></math></inline-formula>, thermal equilibrium between the two phases is achieved, leading to a reduction in entropy generation and, consequently, less exergy destruction. However, in the limit of high <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi></mrow></semantics></math></inline-formula> and low <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>a</mi></mrow></semantics></math></inline-formula>, irreversibility is significant due to large velocity gradients, leading to greater exergy destruction. Furthermore, it was observed that the thermal non-equilibrium intensity (LNTE) significantly influences entropy generation, leading to critical exergy destruction.
ISSN:2311-5521