Variational Solutions and Random Dynamical Systems to SPDEs Perturbed by Fractional Gaussian Noise
This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t)=A(X(t))dt+Φ(t)dBH(t), where A is a nonlinear operator satisfying some monotonicity conditions....
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | The Scientific World Journal |
| Online Access: | http://dx.doi.org/10.1155/2014/601327 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t)=A(X(t))dt+Φ(t)dBH(t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation. |
|---|---|
| ISSN: | 2356-6140 1537-744X |