Assigning Candidate Tutors to Modules: A Preference Adjustment Matching Algorithm (PAMA)
Matching problems arise in various settings where two or more entities need to be matched—such as job applicants to positions, students to colleges, organ donors to recipients, and advertisers to ads slots in web advertising platforms. This study introduces the preference adjustment matching algorit...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Algorithms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1999-4893/18/5/250 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Matching problems arise in various settings where two or more entities need to be matched—such as job applicants to positions, students to colleges, organ donors to recipients, and advertisers to ads slots in web advertising platforms. This study introduces the preference adjustment matching algorithm (PAMA), a novel matching framework that pairs elements, which conceptually represent a bipartite graph structure, based on rankings and preferences. In particular, this algorithm is applied to tutor–module assignment in academic settings, and the methodology is built on four key assumptions where each module must receive its required number of candidates, candidates can only be assigned to a module once, eligible candidates based on ranking and module capacity must be assigned, and priority is given to mutual first-preference matches with institutional policies guiding alternative strategies when needed. PAMA operates in iterative rounds, dynamically adjusting modules and tutors’ preferences while addressing capacity and eligibility constraints. The distinctive innovative element of PAMA is that it combines concepts of maximal and stable matching, pending status and deadlock resolution into a single process for matching tutors to modules to meet the specific requirements of academic institutions and their constraints. This approach achieves balanced assignments by adhering to ranking order and considering preferences on both sides (tutors and institution). PAMA was applied to a real dataset provided by the Hellenic Open University (HOU), in which 3982 tutors competed for 1906 positions within 620 modules. Its performance was tested through various scenarios and proved capable of effectively handling both single-round and multi-round assignments. PAMA effectively handles complex cases, allowing policy-based resolution of deadlocks. While it may lose maximality in such instances, it converges to stability, offering a flexible solution for matching-related problems. |
|---|---|
| ISSN: | 1999-4893 |