MetaRes-DMT-AS: A Meta-Learning Approach for Few-Shot Fault Diagnosis in Elevator Systems
Recent advancements in deep learning have spurred significant research interest in fault diagnosis for elevator systems. However, conventional approaches typically require substantial labeled datasets that are often impractical to obtain in real-world industrial environments. This limitation poses a...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/15/4611 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Recent advancements in deep learning have spurred significant research interest in fault diagnosis for elevator systems. However, conventional approaches typically require substantial labeled datasets that are often impractical to obtain in real-world industrial environments. This limitation poses a fundamental challenge for developing robust diagnostic models capable of performing reliably under data-scarce conditions. To address this critical gap, we propose MetaRes-DMT-AS (Meta-ResNet with Dynamic Meta-Training and Adaptive Scheduling), a novel meta-learning framework for few-shot fault diagnosis. Our methodology employs Gramian Angular Fields to transform 1D raw sensor data into 2D image representations, followed by episodic task construction through stochastic sampling. During meta-training, the system acquires transferable prior knowledge through optimized parameter initialization, while an adaptive scheduling module dynamically configures support/query sets. Subsequent regularization via prototype networks ensures stable feature extraction. Comprehensive validation using the Case Western Reserve University bearing dataset and proprietary elevator acceleration data demonstrates the framework’s superiority: MetaRes-DMT-AS achieves state-of-the-art few-shot classification performance, surpassing benchmark models by 0.94–1.78% in overall accuracy. For critical few-shot fault categories—particularly emergency stops and severe vibrations—the method delivers significant accuracy improvements of 3–16% and 17–29%, respectively. |
|---|---|
| ISSN: | 1424-8220 |