Day-Ahead Planning and Scheduling of Wind/Storage Systems Based on Multi-Scenario Generation and Conditional Value-at-Risk
The volatility and uncertainty of wind power output pose significant challenges to the safe and stable operation of power systems. To enhance the economic efficiency and reliability of day-ahead scheduling in wind farms, this paper proposes a day-ahead planning and scheduling method for wind/storage...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/10/5386 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The volatility and uncertainty of wind power output pose significant challenges to the safe and stable operation of power systems. To enhance the economic efficiency and reliability of day-ahead scheduling in wind farms, this paper proposes a day-ahead planning and scheduling method for wind/storage systems based on multi-scenario generation and Conditional Value-at-Risk (CVaR). First, based on the statistical characteristics of historical wind power forecasting errors, a kernel density estimation method is used to fit the error distribution. A Copula-based correlation model is then constructed to generate multi-scenario wind power output sequences that account for spatial correlation, from which representative scenarios are selected via K-means clustering. An objective function is subsequently formulated, incorporating electricity sales revenue, energy storage operation and maintenance cost, initial state-of-charge (<i>SOC</i>) cost, peak–valley arbitrage income, and penalties for schedule deviations. The initial <i>SOC</i> of the storage system is introduced as a decision variable to enable flexible and efficient coordinated scheduling of the wind/storage system. The storage system is implemented using a 1500 kWh/700 kW lithium iron phosphate (LiFePO<sub>4</sub>) battery to enhance operational flexibility and reliability. To mitigate severe profit fluctuations under extreme scenarios, the model incorporates a CVaR-based risk constraint, thereby enhancing the reliability of the day-ahead plan. Finally, simulation experiments under various initial <i>SOC</i> levels and confidence levels are conducted to validate the effectiveness of the proposed method in improving economic performance and risk management capability. |
|---|---|
| ISSN: | 2076-3417 |